
DIABLO II DATA FILE
GUIDE

Table of Contents

actinfo.txt

armor.txt

automagic.txt

AutoMap.txt

belts.txt

books.txt

charstats.txt

cubemain.txt

difficultylevels.txt

experience.txt

gamble.txt

gems.txt

itemratio.txt

ItemStatCost.txt

ItemTypes.txt

hireling.txt

Levels.txt

LvlMaze.txt

LvlPrest.txt

LvlSub.txt

LvlTypes.txt

LvlWarp.txt

MagicPrefix.txt

MagicSuffix.txt

Missiles.txt

misc.txt

monequip.txt

https://confluence.blizzard.com/display/D2/Data+Text+File+Guide

MonLvl.txt

MonPreset.txt

MonProp.txt

monseq.txt

monstats.txt

monstats2.txt

MonType.txt

monumod.txt

monsounds.txt

npc.txt

objects.txt

objgroup.txt

objpreset.txt

Overlay.txt

pettype.txt

Properties.txt

QualityItems.txt

RarePrefix.txt

RareSuffix.txt

Runes.txt

SetItems.txt

Sets.txt

shrines.txt

skills.txt

skilldesc.txt

sounds.txt

SoundEnviron.txt

states.txt

SuperUniques.txt

TreasureClassEx.txt

UniqueAppellation.txt

UniqueItems.txt

UniqueTitle.txt

UniqueSuffix.txt

weapons.txt

wanderingmon.txt

Reference Data Files

actinfo.txt

Overview

This file controls global Act functionalities including item levels, monster behaviors, and
waypoints

This file uses the wanderingmon.txt file for a modular list of potential wandering units to
spawn

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

act - Defines the ID for the Act
town - Uses an area level (“Name field” from levels.txt) to define the Act’s town area
start - Uses an area level (“Name field” from levels.txt) to define where the player starts
in the Act

maxnpcitemlevel - Controls the maximum item level for items sold by the NPC in the
Act

classlevelrangestart - Uses an area level (“Name field” from levels.txt) with its MonLvl
values as a global Act minimum monster level. For example, this is used to determine
chest levels in an Act.
classlevelrangeend - Uses an area level (“Name field” from levels.txt) with its MonLvl
values as a global Act maximum monster level. For example, this is used to determine
chest levels in an Act.

wanderingnpcstart - Uses an index to determine which wandering monster class to
use when populating areas (See wanderingmmon.txt for a list of possible monsters to
spawn)
wanderingnpcrange - This is a modifier that gets added to the “wanderingnpcstart”
value to randomly select an index

commonactcof - Specifies which “.D2” file to use as for the common Act COF file. This
is used to establish the seed when initializing the Act.

waypoint1 (to waypoint9) - Uses an area level (“Name field” from levels.txt) as the
designated waypoint selection in the Waypoint UI

wanderingMonsterPopulateChance - The percent chance (from 0 to 100) to spawn a
wandering monster (See wanderingmmon.txt for a list of possible monsters to spawn)
wanderingMonsterRegionTotal - The maximum number of wandering monsters
allowed at once
wanderingPopulateRandomChance - A secondary percent chance (from 0 to #) to
determine whether to attempt populating with monsters. Only fails if random chance
selects 0.

armor.txt

Overview

This file controls the functionalities for armor type items

This file is loaded together with other similar files in the following order: weapons.txt,
armor.txt, misc.txt
These combined files form the items structure. Technically these files share the same
fields, but some fields are exclusive for specific item types, so they are not displayed in
the data files that do not need them.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

name - This is a reference field to define the item
version - Defines which game version to create this item (0 = Classic mode | 100 =
Expansion mode)
compactsave - Boolean Field. If equals 1, then only the item’s base stats will be stored
in the character save, but not any modifiers or additional stats. If equals 0, then all of the
items stats will be saved.
rarity - Determines the chance that the item will randomly spawn (1/#). The higher the
value then the rarer the item will be. This field depends on the “spawnable” field being
enabled, the “quest” field being disabled, and the item level being less than or equal to
the area level. This value is also affected by the relative Act number that the item is
dropping in, where the higher the Act number, then the more common the item will drop.
spawnable - Boolean Field. If equals 1, then this item can be randomly spawned. If
equals 0, then this item will never randomly spawn.

speed - If the item type is an armor, then this will affect the Walk/Run Speed reduction
when wearing the armor. If the item type is a weapon, then this will affect the Attack
Speed reduction when wearing the weapon.
reqstr - Defines the amount of the Strength attribute needed to use the item
reqdex - Defines the amount of the Dexterity attribute needed to use the item

durability - Defines the base durability amount that the item will spawn with.
nodurability - Boolean Field. If equals 1, then the item will not have durability. If equals
0, then the item will have durability.

level - Controls the base item level. This is used for determining when the item is
allowed to drop, such as making sure that the item level is not greater than the
monster’s level or the area level.
ShowLevel - Boolean Field. If equals 1, then display the item level next to the item
name. If equals 0, then ignore this.
levelreq - Controls the player level requirement for being able to use the item

cost - Defines the base gold cost of the item when being sold by an NPC. This can be
affected by item modifiers and the rarity of the item.
gamble cost - Defines the gambling gold cost of the item on the Gambling UI

code - Defines a unique 3 letter/number code for the item. This is used as an identifier
to reference the item.
namestr - String Key that is used for the base item name

magic lvl - Defines the magic level of the item, which can affect how magical item
modifiers that can appear on the item (See automagic.txt)
auto prefix - Automatically picks an item affix name from a designated “group” value
from the automagic.txt file, instead of using random prefixes. This is only used when the
item is Magical quality.

alternategfx - Uses a unique 3 letter/number code similar to the defined “code” fields to
determine what in-game graphics to display on the player character when the item is
equipped

normcode - Links to a “code” field to determine the normal version of the item
ubercode - Links to a “code” field to determine the Exceptional version of the item
ultracode - Links to a “code” field to determine the Elite version of the item

component - Determines the layer of player animation when the item is equipped. This
uses a code referenced from the Composit.txt file.

Code Description

0 Head

1 Torso

2 Legs

3 Right Arm

4 Left Arm

5 Right Hand

6 Left Hand

7 Shield

8 Special 1

9 Special 2

10 Special 3

11 Special 4

12 Special 5

13 Special 6

14 Special 7

15 Special 8

16 Do not display anything

invwidth & invheight - Defines the width and height of grid cells that the item occupies
in the player inventory

hasinv - Boolean Field. If equals 1, then the item will have its own inventory allowing for
the capability to socket gems, runes, or jewels. If equals 0, then the item cannot have
sockets.
gemsockets - Controls the maximum number of sockets allowed on this item. This is
limited by the item’s size based on the “invwidth” and “invheight” fields. This also
compares with the “MaxSock1”, “MaxSock25” and “MaxSock40” fields from the
ItemTypes.txt file.

gemapplytype - Determines which affect from a gem or rune will be applied when it is
socketed into this item (See gems.txt)

Code Description

0 Weapon

1 Armor or Helmet

2 Shield

flippyfile - Controls which DC6 file to use for displaying the item in the game world
when it is dropped on the ground (uses the file name as the input)
invfile - Controls which DC6 file to use for displaying the item graphics in the inventory
(uses the file name as the input)
uniqueinvfile - Controls which DC6 file to use for displaying the item graphics in the
inventory when it is a Unique quality item (uses the file name as the input)
setinvfile - Controls which DC6 file to use for displaying the item graphics in the
inventory when it is a Set quality item (uses the file name as the input)

useable - Boolean Field. If equals 1, then the item can be used with the right-click
mouse button command (this only works with specific belt items or quest items). If
equals 0, then ignore this.

stackable - Boolean Field. If equals 1, then the item will use a quantity field and handle
stacking functionality. This can depend on if the item type is throwable, is a type of

ammunition, or is some other kind of miscellaneous item. If equals 0, then the item
cannot be stacked.
minstack - Controls the minimum stack count or quantity that is allowed on the item.
This field depends on the “stackable” field being enabled.
maxstack - Controls the maximum stack count or quantity that is allowed on the item.
This field depends on the “stackable” field being enabled.
spawnstack - Controls the stack count or quantity that the item can spawn with. This
field depends on the “stackable” field being enabled.

Transmogrify - Boolean Field. If equals 1, then the item will use the transmogrify
function. If equals 0, then ignore this. This field depends on the “useable” field being
enabled.
TMogType - Links to a “code” field to determine which item is chosen to transmogrify
this item to.
TMogMin - Controls the minimum quantity that the transmogrify item will have. This
depends on what item was chosen in the “TMogType” field, and that the transmogrify
item has quantity.
TMogMax - Controls the minimum quantity that the transmogrify item will have. This
depends on what item was chosen in the “TMogType” field, and that the transmogrify
item has quantity.

type - Points to an Item Type defined in the ItemTypes.txt file, which controls how the
item functions
type2 - Points to a secondary Item Type defined in the ItemTypes.txt file, which controls
how the item functions. This is optional but can add more functionalities and possibilities
with the item.

dropsound - Points to sound defined in the sounds.txt file. Used when the item is
dropped on the ground.
dropsfxframe - Defines which frame in the “flippyfile” animation to play the “dropsound”
sound when the item is dropped on the ground.
usesound - Points to sound defined in the sounds.txt file. Used when the item is moved
in the inventory or used.

unique - Boolean Field. If equals 1, then the item can only spawn as a Unique quality
type. If equals 0, then the item can spawn as other quality types.

transparent - Boolean Field. If equals 1, then the item will be drawn transparent on the
player model (similar to ethereal models). If equals 0, then the item will appear solid on
the player model.

transtbl - Controls what type of transparency to use, based on the “transparent” field
being enabled.

Code Description

0 Transparency at 25%

1 Transparency at 50%

2 Transparency at 75%

3 Black Alpha Transparency

4 White Alpha Transparency

5 No Transparency

6 Dark Transparency (Unused)

7 Highlight Transparency (Used when mousing over the unit)

8 Blended

lightradius - Controls the value of the light radius that this item can apply on the
monster. This only affects monsters with this item equipped, not other types of units.
This is ignored if the item’s component on the monster is “lit”, “med”, or “hvy”.

belt - Controls which belt type to use for belt items only. This field determines what
index entry in the belts.txt file to use.

quest - Controls what quest class is tied to the item which can enable certain item
functionalities for a specific quest. Any value greater than 0 will also mean the item is
flagged as a quest item, which can affect how it is displayed in tooltips, how it is traded
with other players, its item rarity, and how it cannot be sold to an NPC. If equals 0, then
the item will not be flagged as a quest item.

Code Description

0 Not a quest item

1 Act 1 Prologue

2 Den of Evil

3 Sisters’ Burial Grounds

4 Tools of the Trade

5 The Search for Cain

6 The Forgotten Tower

7 Sisters to the Slaughter

8 Act 2 Prologue

9 Radament’s Lair

10 The Horadric Staff

11 The Tainted Sun

12 The Arcane Sanctuary

13 The Summoner

14 The Seven Tombs

15 Act 2 Traversed

16 Lam Esen’s Tome

17 Khalim’s Will

18 Blade of the Old Religion

19 The Golden Bird

20 The Blackened Temple

21 The Guardian

22 Act 4 Prologue

23 The Fallen Angel

24 Terror’s End

25 The Hellforge

26 Rogue Warning

27 Guard in Town Warning

28 Guard in Desert Warning

29 Dark Wanderer Seen

30 Angel Warning

31
Respec from Akara Complete
Act 5 Prologue

32 Siege on Harrogath

33 Rescue on Mount Arreat

34 Prison of Ice

35 Betrayal of Harrogath

36 Rite of Passage

37 Eve of Destruction

questdiffcheck - Boolean Field. If equals 1 and the “quest” field is enabled, then the
game will check the current difficulty setting and will tie that difficulty setting to the quest
item. This means that the player can have more than 1 of the same quest item as long
each they are obtained per difficulty mode (Normal / Nightmare / Hell). If equals 0 and
the “quest” field is enabled, then the player can only have 1 count of the quest item in
the inventory, regardless of difficulty.

missiletype - Points to the “Id” field from the Missiles.txt file, which determines what
type of missile is used when using the throwing weapons
durwarning - Controls the threshold value for durability to display the low durability
warning UI. This is only used if the item has durability.
qntwarning - Controls the threshold value for quantity to display the low quantity
warning UI. This is only used if the item has stacks.

mindam - The minimum physical damage provided by the item
maxdam - The maximum physical damage provided by the item

StrBonus - The percentage multiplier that gets multiplied the player’s current Strength
attribute value to modify the bonus damage percent from the equipped item. If this
equals 1, then default the value to 100.
DexBonus - The percentage multiplier that gets multiplied the player’s current Dexterity
attribute value to modify the bonus damage percent from the equipped item. If this
equals 1, then default the value to 100.

gemoffset - Determines the starting index offset for reading the gems.txt file when
determining what effects gems or runes will have the item based on the “gemapplytype”
field. For example, if this value equals 9, then the game will start with index 9 (“Chipped
Emerald”) and ignore the previously defined gems in the gems.txt file, which can mean
that those ignored gems will not apply modifiers when socketed into the item.

bitfield1 - Controls different flags that can affect the item. Uses an integer value to
check against different bit fields by using the “&” operator. For example, if the value
equals 5 (binary = 101) then that returns true for both the 4 (binary = 100) and 1 (binary
= 1) bit field values.

Bit Field
One Bits

Binary Equivalent
Value

Description

1 1 Allow the item to be capable of having Magic
quality

2 10 The item is classified as metal

4 100 The item is classified as a spellcaster item
(currently does nothing)

8 1000 The item is classified as a skill based item
(currently does nothing)

The following fields are separated per NPC in each Act:
[NPC]Min - Minimum amount of this item type in Normal rarity that the NPC can sell at
once
[NPC]Max - Maximum amount of this item type in Normal rarity that the NPC can sell at
once. This must be equal to or greater than the minimum amount.
[NPC]MagicMin - Minimum amount of this item type in Magical rarity that the NPC can
sell at once
[NPC]MagicMax - Maximum amount of this item type in Magical rarity that the NPC can
sell at once. This must be equal to or greater than the minimum amount.
[NPC]MagicLvl - Maximum magic level allowed for this item type in Magical rarity

Where [NPC] is one of the following:

Charsi

Gheed

Akara

Fara

Lysander

Drognan

Hratli

Alkor

Ormus

Elzix

Asheara

Cain

Halbu

Jamella

Larzuk

Malah

Anya

Transform - Controls the color palette change of the item for the character model
graphics

InvTrans - Controls the color palette change of the item for the inventory graphics

Code Color

0 No color change

1 Grey

2 Grey 2

3 Gold

4 Brown

5 Grey Brown

6 Inventory Grey

7 Inventory Grey 2

8 Inventory Grey Brown

SkipName - Boolean Field. If equals 1 and the item is Unique rarity, then skip adding
the item’s base name in its title. If equals 0, then ignore this.

NightmareUpgrade - Links to another item’s “code” field. Used to determine which item
will replace this item when being generated in the NPC’s store while the game is playing
in Nightmare difficulty. If this field’s code equals “xxx”, then this item will not change in
this difficulty.
HellUpgrade - Links to another item’s “code” field. Used to determine which item will
replace this item when being generated in the NPC’s store while the game is playing in
Hell difficulty. If this field’s code equals “xxx”, then this item will not change in this
difficulty.

Nameable - Boolean Field. If equals 1, then the item’s name can be personalized by
Anya for the Act 5 Betrayal of Harrogath quest reward. If equals 0, then the item cannot
be used for the personalized name reward.
PermStoreItem - Boolean Field. If equals 1, then this item will always appear on the
NPC’s store. If equals 0, then the item will randomly appear on the NPC’s store when
appropriate.
worldevent - Boolean Field. If equals 1, then this item can be used to trigger the Uber
Diablo world event when it is sold to an NPC. If equals 0, then ignore this.

The following fields are exclusive to the armor.txt file, because these fields only work
with Armor type items:

minac - The minimum amount of Defense that an armor item type can have
maxac - The maximum amount of Defense that an armor item type can have

block - Controls the block percent chance that the item provides (out of 100, but caps at
75).

rArm - Controls the character’s graphics and animations for the Right Arm component
when wearing the armor, where the value 0 = Light or “lit”, 1 = Medium or “med”, and 2
= Heavy or “hvy”
lArm - Controls the character’s graphics and animations for the Left Arm component
when wearing the armor, where the value 0 = Light or “lit”, 1 = Medium or “med”, and 2
= Heavy or “hvy”
Torso - Controls the character’s graphics and animations for the Torso component
when wearing the armor, where the value 0 = Light or “lit”, 1 = Medium or “med”, and 2
= Heavy or “hvy”
Legs - Controls the character’s graphics and animations for the Legs component when
wearing the armor, where the value 0 = Light or “lit”, 1 = Medium or “med”, and 2 =
Heavy or “hvy”
rSPad - Controls the character’s graphics and animations for the Right Shoulder Pad
component when wearing the armor, where the value 0 = Light or “lit”, 1 = Medium or
“med”, and 2 = Heavy or “hvy”
lSPad - Controls the character’s graphics and animations for the Left Shoulder Pad
component when wearing the armor, where the value 0 = Light or “lit”, 1 = Medium or
“med”, and 2 = Heavy or “hvy”

automagic.txt

Overview

This file controls what item affixes (groups of item modifiers) are automatically applied
to items, regardless of their quality type. These item affixes will not change the quality of
the item.
An example can be class based items like a paladin shield that can be Normal Quality
but still have Paladin skill bonuses without changing the item’s name.

This file is loaded together with other similar files in the following order: magicsuffix.txt,
magicprefix.txt, automagic.txt
These combined files form the Item Mods structure.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Name - Defines the item affix name
version - Defines which game version to use this item affix (<100 = Classic mode | 100
= Expansion mode)

spawnable - Boolean Field. If equals 1, then this item affix is used as part of the game’s
randomizer for assigning item modifiers when an item spawns. If equals 0, then this
item affix is never used.
rare - Boolean Field. If equals 1, then this item affix can be used when randomly
assigning item modifiers when a rare item spawns. If equals 0, then this item affix is not
used for rare items.

level - The minimum item level required for this item affix to spawn on the item. If the
item level is below this value, then the item affix will not spawn on the item.
maxlevel - The maximum item level required for this item affix to spawn on the item. If
the item level is above this value, then the item affix will not spawn on the item.
levelreq - The minimum character level required to equip an item that has this item affix

classspecific - Controls if this item affix should only be used for class specific items.
This relies on the class specified in the “Class” field from ItemTypes.txt, for the specific
item.

Code Description

(empty) Any Class

ama Amazon only

bar Barbarian only

pal Paladin only

nec Necromancer only

sor Sorceress only

dru Druid only

ass Assassin only

class - Controls which character class is required for the class specific level
requirement “classlevelreq” field

Code Description

(empty) None

ama Amazon

bar Barbarian

pal Paladin

nec Necromancer

sor Sorceress

dru Druid

ass Assassin

classlevelreq - The minimum character level required for a specific class in order to
equip an item that has this item affix. This relies on the class specified in the “class”
field. If equals null, then the class will default to using the “levelreq” field.

frequency - Controls the probability that the affix appears on the item (a higher value
means that the item affix will appear on the item more often). This value gets summed
together with other “frequency” values from all possible item affixes that can spawn on
the item, and then is used as a denominator value for the randomizer. Whichever item
affix is randomly selected will be the one to appear on the item. The formula is

calculated as the following: [Item Affix Selected] = [“frequency”] / [Total Frequency]. If
the item has a magic level (from the “magic lvl” field in weapons.txt/armor.txt/misc.txt)
then the magic level value is multiplied with this value. If equals 0, then this item affix
will never appear on an item.
group - Assigns an item affix to a specific group number. Items cannot spawn with
more than 1 item affix with the same group number. This is used to guarantee that
certain item affixes do not overlap on the same item. If this field is null, then the group
number will default to group 0.

mod1code (to mod3code) - Controls the item properties for the item affix (Uses the
“code” field from Properties.txt)
mod1param (to mod3param) - The “parameter” value associated with the related
property (mod#code). Usage depends on the property function (See the “func” field on
Properties.txt)
mod1min (to mod3min) - The “min” value to assign to the listed related (mod#code).
Usage depends on the property function (See the “func” field on Properties.txt)
mod1max (to mod3 max) - The “max” value to assign to the listed related (mod#code).
Usage depends on the property function (See the “func” field on Properties.txt)

transformcolor - Controls the color change of the item after spawning with this item
affix. If empty, then the item affix will not change the item’s color. (Uses Color Codes
from the reference file colors.txt)

Code Color

 No color change

whit White

lgry Light Grey

dgry Dark Grey

blac Black

lblu Light Blue

dblu Dark Blue

cblu Crystal Blue

lred Light Red

dred Dark Red

cred Crystal Red

lgrn Light Green

dgrn Dark Green

cgrn Crystal Green

lyel Light Yellow

dyel Dark Yellow

lgld Light Gold

dgld Dark Gold

lpur Light Purple

dpur Dark Purple

oran Orange

bwht Bright White

itype1 (to itype7) - Controls what Item Types are allowed to spawn with this item affix.
Uses the “code” field from ItemTypes.txt

etype1 (to etype5) - Controls what Item Types are forbidden to spawn with this item
affix. Uses the “code” field from ItemTypes.txt

multiply - Multiplicative modifier for the item’s buy and sell costs, based on the item
affix (Calculated in 1024ths for buy cost and 4096ths for sell cost)
add - Flat integer modification to the item’s buy and sell costs, based on the item affix

AutoMap.txt

Overview

This file controls how the Automap in game will display the discovered parts of the area
level and store this progress in character save files.

The Automap is composed of many different image files depicted as small icons to
convey what part of the area level is being displayed. This file will assign these image
files to their related map cells, which will properly build the Automap as the player
explores the area.

Not all tiles will have image files assigned to them, and in these cases, those parts of
the Automap will remain blank.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

LevelName - Uses a string format system to define the Act number and name of the
level type. Level types are static defined values that cannot be added. The number at
the start of the string defines the Act number, and the word that follows this number
defines the level type. This data should stay grouped by level.

String Code Description

 Level Type None

1 Town Level Type 1 Town

1 Wilderness Level Type 1 Wilderness

1 Cave Level Type 1 Cave

1 Crypt Level Type 1 Crypt

1 Monestary Level Type 1 Monestary

1 Courtyard Level Type 1 Courtyard

1 Barracks Level Type 1 Barracks

1 Jail Level Type 1 Jail

1 Cathedral Level Type 1 Cathedral

1 Catacombs Level Type 1 Catacombs

1 Tristram Level Type 1 Tristram

2 Town Level Type 2 Town

2 Sewer Level Type 2 Sewer

2 Harem Level Type 2 Desert

2 Basement Level Type 2 Sewer

2 Desert Level Type 2 Desert

2 Tomb Level Type 2 Tomb

2 Lair Level Type 2 Lair

2 Arcane Level Type 2 Arcane

3 Town Level Type 3 Town

3 Jungle Level Type 3 Jungle

3 Kurast Level Type 3 Kurast

3 Spider Level Type 3 Spider

3 Dungeon Level Type 3 Dungeon

3 Sewer Level Type 3 Sewer

4 Town Level Type 4 Town

4 Mesa Level Type 4 Mesa

4 Lava Level Type 4 Hell

5 Town Level Type 6 Town

5 Siege Level Type 6 Siege

5 Barricade Level Type 6 Barricade

5 Temple Level Type 6 Temple

5 Ice Level Type 5 Ice Caves

5 Baal Level Type 5 Baal

5 Lava Level Type 5 Lava

TileName - Uses defined string codes to control the tile orientations on the Automap

String Code Description

fl Base Floor

wl Base Left Wall

wr Base Right Wall

wtlr Base Upper Top Corner Right

wtll Base Upper Top Corner Left

wtr Base Upper Top Corner

wbl Base Lower Bottom Corner Left

wbr Base Lower Bottom Corner Right

wld Base Left Door

wrd Base Right Door

wle Base Left Exit

wre Base Right Exit

co Base Column

sh Base Shadow

tr Base Tree

rf Base Roof

ld Base Left Wall Down

rd Base Right Wall Down

fd Base Full Wall Down

fi Base Front Wall Down

Style - Defines a group numeric ID for the range of cells, meaning that the game will try
to use cells that match the same style value, after determining the Level Type and Tile
Type. If this value is equal to 255, then the style is ignored in the “Cel#” field selection.

StartSequence - The start index value for valid “Cel#” field to choose for displaying on
the Automap. If this value is equal to 255, then both the “StartSequence” and
“EndSequence” are ignored in the “Cel#” field selection. If this value is equal to -1, then
this field is ignored in the “Cel#” field selection.
EndSequence - The end index value for a valid “Cel#” field to choose for displaying on
the Automap. If this value is equal to -1, then this field is ignored in the “Cel#” field
selection.

Cel1 (to Cel4) - Determines the unique image frame to use from the MaxiMap.dc6 file
that will be used to display on the Automap for that position of the level tile. There are
multiple of these fields because they can be randomly chosen to give image variety in
the Automap display. If the value equals -1, then this cell is not valid and will be ignored.
If no cell is chosen overall, then nothing will be drawn in this area on the Automap.

belts.txt

Overview

This file controls the statistics for how belts and their various item slots work.

This file relies on the “belt” field from the armor.txt file. Each belt entry in this file defines
a belt type that controls how many slots the belt item provides. Each of these belt types
are a possible value that items in the armor.txt file can use in the “belt” field.

The game uses the 3rd entry is defined as the “default” belt, meaning that the player
has no belt equipped, and the game will use this entry’s stats to determine how to
handle the belt slots.

Data Fields

name - This is a reference field to define the belt type

numboxes - This integer field defines the number of item slots in the belt. This is used
when inserting items into the belt and also for handling the removal of items when the
belt item is unequipped.

box1left (to box 16left) - Specifies the belt slot left side coordinates. This is use for
Server verification purposes and does not affect the local box UI in the client.
box1right (to box16right) - Specifies the belt slot right side coordinates. This is use for
Server verification purposes and does not affect the local box UI in the client.
box1top (to box16top) - Specifies the belt slot left top coordinates. This is use for
Server verification purposes and does not affect the local box UI in the client.
box1bottom (to box16bottom) - Specifies the belt slot bottom side coordinates. This is
use for Server verification purposes and does not affect the local box UI in the client.

books.txt

Overview

This file controls functionalities of book items (also called Tomes). This includes how
they interact with their related scroll items.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Name - This is a reference field to define the book
ScrollSpellCode - Uses an item’s code to define as the scroll item for the book
BookSpellCode - Uses an item’s code to define as the book item

pSpell - Defines the item spell function to use when using the book

Code Description

0 None

1 Identify

2 Town Portal

3 Health Potion (Flat Amount with special bonus for class and Vitality attribute)

4 Health Potion 2 (Flat Amount with no special bonus)

5 Health Potion 3 (Percentage)

6 Antidote Potion (Apply a state that can override other states)

7 Transmogrify (Used to open the Horadric Cube’s UI for transmogrification)

8 Elixir (Modify a stat)

9 Herb (Apply a state using item stats)

10 Skill (Cast the Fireball skill to a target unit)

11 Skill XY (Cast the Fireball skill to a location using X and Y coordinates)

SpellIcon - Controls which DC6 file to display for the mouse cursor when using the
scroll or book (Uses numeric indices to pick the DC6 file. Example: When using Identify,
use icon 1 or buysell.DC6)
ScrollSkill - Defines which Skill to use for the scroll item (uses the “skill” field from
skills.txt)
BookSkill - Defines which Skill to use for the book item (uses the “skill” field from
skills.txt)

BaseCost - The starting gold cost to buy the book from an NPC
CostPerCharge - The additional gold cost added with the book’s “BaseCost” value,
based on how many charges the book has

charstats.txt

Overview

This file controls the starting stats for each of the classes

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

class - The name of the character class (this cannot be changed)

str - Starting amount of the Strength attribute
dex - Starting amount of the Dexterity attribute
int - Starting amount of the Energy attribute
vit - Starting amount of the Vitality attribute

stamina - Starting amount of Stamina
hpadd - Bonus starting Life value (This value gets added with the "vit" field value to
determine the overall starting amount of Life)
ManaRegen - Number of seconds to regain max Mana. (If this equals 0 then it will
default to 300 seconds)
ToHitFactor - Starting amount of Attack Rating

WalkVelocity - Base Walk movement speed
RunVelocity - Base Run movement speed
RunDrain - Rate at which Stamina is lost while running

LifePerLevel - Amount of Life added for each level gained (Calculated in fourths and is
divided by 256)

StaminaPerLevel - Amount of Stamina added for each level gained (Calculated in
fourths and is divided by 256)
ManaPerLevel - Amount of Mana added for each level gained (Calculated in fourths
and is divided by 256)

LifePerVitality - Amount of Life added for each point in Vitality (Calculated in fourths
and is divided by 256)
StaminaPerVitality - Amount of Stamina added for each point in Vitality (Calculated in
fourths and is divided by 256)

ManaPerMagic - Amount of Mana added for each point in Energy (Calculated in fourths
and is divided by 256)

StatPerLevel - Amount of Attribute stat points earned for each level gained
SkillsPerLevel - Amount of Skill points earned for each level gained

LightRadius - Baseline radius size of the character's Light Radius
BlockFactor - Baseline percent chance for Blocking
MinimumCastingDelay - Global delay on all Skills after using a Skill with a Casting
Delay (Calculated in Frames, where 25 Frames = 1 Second)

StartSkill - Controls what skill will be added by default to the character's starting
weapon and will be slotted in the Right Skill selection (Uses the "skill" field from
skills.txt)
Skill 1 (to Skill 10) - Skill that the character starts with and will always have available
(Uses the "skill" field from skills.txt)

StrAllSkills - String key for displaying the item modifier bonus to all skills for the class
(Ex: "+1 to Barbarian Skill Levels")
StrSkillTab1 - String key for displaying the item modifier bonus to all skills for the
class's first skill tab (Ex: "+1 to Warcries")
StrSkillTab2 - String key for displaying the item modifier bonus to all skills for the
class's second skill tab (Ex: "+1 to Combat Skills")
StrSkillTab3 - String key for displaying the item modifier bonus to all skills for the
class's third skill tab (Ex: "+1 to Masteries")
StrClassOnly - String key for displaying on item modifier exclusive to the class or for
class specific items (Ex: "Barbarian only")

HealthPotionPercent - This scales the amount of Life that a Healing potion will restore
based on the class
ManaPotionPercent - This scales the amount of Mana that a Mana potion will restore
based on the class

baseWClass - Base weapon class that the character will use by default when no
weapon is equipped

Code Description

hth Hand to Hand (Default value if the value is empty)

1hs One Handed Swing

1ht One Handed Thrust

bow Bow

2hs Two Handed Swing

2ht Two Handed Thrust

1js Dual Wielding - Left Jab Right Swing

1jt Dual Wielding - Left Jab Right Thrust

1ss Dual Wielding - Left Swing Right Swing

1st Dual Wielding - Left Swing Right Thrust

stf Staff

xbw Crossbow

ht1 One Hand to Hand

ht2 Two Hand to Hand

item1 (to item10) - Item that the character starts with (Uses ID pointer from
Weapons.txt, Armor.txt or Misc.txt)

item1loc (to item10loc) - Location where the related item will be placed in the
character's inventory

Code Description

(empty)
Inventory grid
(Default Value)

head Head

neck Neck

tors Torso

rarm Right Arm

larm Left Arm

rrin Right Ring

lrin Left Ring

belt Belt

feet Feet

glov Gloves

item1count (to item10count) - The amount of the related item that the character starts
with

item1quality (to item10quality) - Controls the quality level of the related item

Item Quality Code Description

0 Any Quality (Used for a random quality)

1 Low Quality (Ex: "Crude")

2 Normal Quality (Default value if the value is empty)

3 High Quality (Superior)

4 Magic Quality (Uses Magic Prefixes and Suffixes)

5 Set Item

6 Rare Quality

7 Unique (Predetermined stats)

8 Crafted

9 Tempered

cubemain.txt

Overview

This file controls the recipes for the Horadric Cube

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

description - This is a reference field to define the cube recipe
enabled - Boolean field. If equals 1, then the recipe can be used in-game. If equals 0,
then the recipe cannot be used in-game.
ladder - Boolean field. If equals 1, then the recipe can only be used on Ladder realm
games. If equals 0, then the recipe can be used in all game types.
min diff - The minimum game difficulty to use the recipe (0 = All Game Difficulties | 1 =
Nightmare and Hell Difficulty only | 2 = Hell Difficulty only)
version - Defines which game version to use this recipe (0 = Classic mode | 100 =
Expansion mode)

op - Uses a function as an additional input requirement for the recipe

Op ID Parameters Description

(empty) Do nothing

1 param
value

Require that the current day of the month is less than “param”
or greater than “value”

2 value Require that the current day of the week does not equal
“value”
(0=None, 1=Sunday, 2=Monday, 3=Tuesday, 4=Wednesday,
5=Thursday, 6=Friday, 7=Saturday)

3 param
value

Require that the player’s current stat (using “param” as the
stat ID from ItemStatCost.txt) is greater than “value”

4 param
value

Require that the player’s current stat (using “param” as the
stat ID from ItemStatCost.txt) is less than “value”

5 param
value

Require that the player’s current stat (using “param” as the
stat ID from ItemStatCost.txt) is not equal to “value”

6 param
value

Require that the player’s current stat (using “param” as the
stat ID from ItemStatCost.txt) is equal to “value”

7 param
value

Require that the player’s base stat (using “param” as the stat
ID from ItemStatCost.txt) is greater than “value”

8 param
value

Require that the player’s base stat (using “param” as the stat
ID from ItemStatCost.txt) is less than “value”

9 param
value

Require that the player’s base stat (using “param” as the stat
ID from ItemStatCost.txt) is not equal to “value”

10 param
value

Require that the player’s base stat (using “param” as the stat
ID from ItemStatCost.txt) is equal to “value”

11 param
value

Require that the player’s non-base stat (using “param” as the
stat ID from ItemStatCost.txt) is greater than “value”

12 param
value

Require that the player’s non-base stat (using “param” as the
stat ID from ItemStatCost.txt) is less than “value”

13 param
value

Require that the player’s non-base stat (using “param” as the
stat ID from ItemStatCost.txt) is not equal to “value”

14 param
value

Require that the player’s non-base stat (using “param” as the
stat ID from ItemStatCost.txt) is equal to “value”

15 param
value

Require that the input item’s current stat (using “param” as
the stat ID from ItemStatCost.txt) is greater than “value”

16 param
value

Require that the input item’s current stat (using “param” as
the stat ID from ItemStatCost.txt) is less than “value”

17 param
value

Require that the input item’s current stat (using “param” as
the stat ID from ItemStatCost.txt) is not equal to “value”

18 param
value

Require that the input item’s current stat (using “param” as
the stat ID from ItemStatCost.txt) is equal to “value”

19 param
value

Require that the input item’s base stat (using “param” as the
stat ID from ItemStatCost.txt) is greater than “value”

20 param
value

Require that the input item’s base stat (using “param” as the
stat ID from ItemStatCost.txt) is less than “value”

21 param
value

Require that the input item’s base stat (using “param” as the
stat ID from ItemStatCost.txt) is not equal to “value”

22 param
value

Require that the input item’s base stat (using “param” as the
stat ID from ItemStatCost.txt) is equal to “value”

23 param
value

Require that the input item’s non-base stat (using “param” as
the stat ID from ItemStatCost.txt) is greater than “value”

24 param
value

Require that the input item’s non-base stat (using “param” as
the stat ID from ItemStatCost.txt) is less than “value”

25 param
value

Require that the input item’s non-base stat (using “param” as
the stat ID from ItemStatCost.txt) is not equal to “value”

26 param
value

Require that the input item’s non-base stat (using “param” as
the stat ID from ItemStatCost.txt) is equal to “value”

27 value Require that the item’s Mod Class is not equal to “value”. An
item’s Mod Class value can be the item’s unique ID or quality
type, depending on the case.

28 Checks that the item has the Quest and QuestDiffCheck flag,
then ensures that the item’s quest difficulty is greater than the
game’s difficulty level

param - Integer value used as a possible parameter for the “op” function
value - Integer value used as a possible parameter for the “op” function

class - Defines the recipe to be only usable by a defined class

Code Description

(empty) Any Class

ama Amazon only

bar Barbarian only

pal Paladin only

nec Necromancer only

sor Sorceress only

dru Druid only

ass Assassin only

numinputs - Controls the number of items that need to be inside the cube for the recipe

input 1 (to input7) - Controls what items are required for the recipe. Uses the item’s
unique code. Users can also add input parameters by adding a comma “,” to the input
and using a code.

Code Description

qty=# The number (#) of this item type required for the recipe

low Low Quality

nor Normal Quality

hiq High Quality (Superior)

mag Magic Item

set Set Item

rar Rare Item

uni Unique Item

crf Crafted Item

tmp Tempered Item

nos Item with no sockets

sock=# Item with sockets, where # defines the number of sockets

noe Item that is not Ethereal

eth Item that is Ethereal

upg Item that allows Upgrades

bas Basic Item

exc Exceptional Item

eli Elite Item

nru Item is not a Rune Word

output - Controls the first output item. Uses the item’s unique code. Users can also add
output parameters by adding a comma “,” to the output and using a code.

Code Description

Cow Portal Special code to create the Portal to the Moo Moo Farm

Pandemonium Portal Special code to randomly create 1 of the 3
Pandemonium Portals:
(The Matron’s Den / The Forgotten Sands / The Furnace
of Pain)
(Does not create duplicate portals in the same game)

Pandemonium Finale
Portal

Special code to create the Portal to Uber Tristram

Red Portal Special code to create a permanent Red Portal to a Level
ID.
The Level ID is determined by the output “qty=#” code.

usetype Use the same item type as “input 1” for the output item’s
type

useitem Use the item from “input 1” as the output item

qty=# The number (#) of this item type created

pre=# Force the output item to have an item prefix, where #
equals the ID of the prefix (see the row count on
MagicPrefix.txt)

suf=# Force the output item to have an item suffix, where #
equals the ID of the suffix (see the row count on
MagicSuffix.txt)

low Low Quality Item

nor Normal Item

hiq High Quality Item (Superior)

mag Magic Item

set Set Item

rar Rare Item

uni Unique Item

crf Crafted Item

tmp Tempered Item

eth Ethereal Item

sock Item with sockets, where # defines the number of sockets

mod Use the item modifiers from “input 1” as the output item’s
modifiers

uns Destroy all gems/runes/jewels in the item’s sockets

rem Remove all gems/runes/jewels in the item’s sockets

reg If the function has “usetype” and if the item is a Unique,
then regenerate/reroll the Unique

exc Exceptional Item

eli Elite Item

rep Repair the Item

rch Recharge all of the skill charges on the Item

lvl=# The number (#) of this item type created (same as
“qty=#”)

lvl - Forces the output item level to be a specific level. If this field is used, then ignore
the “plvl” and “ilvl” fields.
plvl - This is a numeric ratio that gets multiplied with the current player’s level, to add to
the output item’s level requirement
ilvl - This is a numeric ratio that gets multiplied with “input 1” item’s level, to add to the
output item’s level requirement
mod 1 (to mod 5) - Controls the output item properties (Uses the “code” field from
Properties.txt)
mod 1 chance (to mod 5 chance) - The percent chance that the property will be
assigned. If this equals 0, then the Property will always be assigned.
mod 1 param (to mod 5 param) - The “parameter” value associated with the listed
property (mod). Usage depends on the property function (See the “func” field on
Properties.txt)
mod 1 min (to mod 5 min) - The “min” value to assign to the listed property (mod).
Usage depends on the property function (See the “func” field on Properties.txt)
mod 1 max (to mod 5 max) - The “max” value to assign to the listed property (mod).
Usage depends on the property function (See the “func” field on Properties.txt)

output b - Controls the second output item. Uses the item’s unique code. Users can
also add output parameters by adding a comma “,” to the output and using a code. (See
“output” for more details)
b lvl - Forces the output item level to be a specific level. If this field is used, then ignore
the “plvl” and “ilvl” fields.
b plvl - This is a numeric ratio that gets multiplied with the current player’s level, to add
to the output item’s level requirement
b ilvl - This is a numeric ratio that gets multiplied with “input 2” item’s level, to add to the
output item’s level requirement
b mod 1 (to b mod 5) - Controls the output item properties (Uses the “code” field from
Properties.txt)
b mod 1 chance (to b mod 5 chance) - The percent chance that the property will be
assigned. If this equals 0, then the Property will always be assigned.
b mod 1 param (to b mod 5 param) - The “parameter” value associated with the listed
property (mod). Usage depends on the property function (See the “func” field on
Properties.txt)
b mod 1 min (to b mod 5 min) - The “min” value to assign to the listed property (mod).
Usage depends on the property function (See the “func” field on Properties.txt)
b mod 1 max (to b mod 5 max) - The “max” value to assign to the listed property
(mod). Usage depends on the property function (See the “func” field on Properties.txt)

output c - Controls the third output item. Uses the item’s unique code. Users can also
add output parameters by adding a comma “,” to the output and using a code. (See
“output” for more details)

c lvl - Forces the output item level to be a specific level. If this field is used, then ignore
the “plvl” and “ilvl” fields.
c plvl - This is a numeric ratio that gets multiplied with the current player’s level, to add
to the output item’s level requirement
c ilvl - This is a numeric ratio that gets multiplied with “input 3” item’s level, to add to the
output item’s level requirement
c mod 1 (to c mod 5) - Controls the output item properties (Uses the “code” field from
Properties.txt)
c mod 1 chance (to c mod 5 chance) - The percent chance that the property will be
assigned. If this equals 0, then the Property will always be assigned.
c mod 1 param (to c mod 5 param) - The “parameter” value associated with the listed
property (mod). Usage depends on the property function (See the “func” field on
Properties.txt)
c mod 1 min (to c mod 5 min) - The “min” value to assign to the listed property (mod).
Usage depends on the property function (See the “func” field on Properties.txt)
c mod 1 max (to c mod 5 max) - The “max” value to assign to the listed property
(mod). Usage depends on the property function (See the “func” field on Properties.txt)

difficultylevels.txt

Overview

This file controls global parameters for game rules and how they work between each
difficulty mode
Users cannot add new difficulty modes from this file

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Name - This is a reference field to define the difficulty mode

ResistPenalty - Defines the baseline starting point for a player character’s resistances
for Expansion mode
ResistPenaltyNonExpansion - Defines the baseline starting point for a player
character’s resistances for Non-Expansion mode
DeathExpPenalty - Modifies the percentage of current level experience lost when a
player character dies

MonsterSkillBonus - Adds additional skill levels to skills used by monsters (defined
from monstats.txt)

MonsterFreezeDivisor - Divisor that affects all Freeze Length values on monsters. The
attempted Freeze Length value is divided by this divisor to determine the actual Freeze
Length.
MonsterColdDivisor - Divisor that affects all Cold Length values on monsters. The
attempted Cold Length value is divided by this divisor to determine the actual Cold
Length.
AiCurseDivisor - Divisor that affects all durations of Curses on monsters. The
attempted Curse duration is divided by this divisor to determine the actual Curse
duration.

LifeStealDivisor - Divisor that affects the amount of Life Steal that player characters
gain. The attempted Life Steal value is divided by this divisor to determine the actual
Life Steal.
ManaStealDivisor - Divisor that affects the amount of Mana Steal that player
characters gain. The attempted Mana Steal value is divided by this divisor to determine
the actual Mana Steal.

UniqueDamageBonus - Percentage modifier for a Unique monster’s overall Damage
and Attack Rating. This is applied after calculating the monster’s other modifications.
ChampionDamageBonus - Percentage modifier for a Champion monster’s overall
Damage and Attack Rating. This is applied after calculating the monster’s other
modifications.

PlayerDamagePercentVSPlayer - Percentage modifier for the total damage a player
deals to another player
PlayerDamagePercentVSMercenary - Percentage modifier for the total damage a
player deals to another player’s mercenary
PlayerDamagePercentVSPrimeEvil - Percentage modifier for the total damage a
player deals to a Prime Evil boss

MercenaryDamagePercentVSPlayer - Percentage modifier for the total damage a
player’s mercenary deals to another player
MercenaryDamagePercentVSMercenary - Percentage modifier for the total damage a
player’s mercenary deals to another player’s mercenary
MercenaryDamagePercentVSBoss - Percentage modifier for the total damage a
player’s mercenary deals to a boss monster
MercenaryMaxStunLength - The frame length for the maximum stun length allowed on
a player’s mercenary (25 Frames = 1 second)

PrimeEvilDamagePercentVSPlayer - Percentage modifier applied to the total damage
a Prime Evil boss deals to a player
PrimeEvilDamagePercentVSMercenary - Percentage modifier for the total damage a
Prime Evil boss deals to a player’s mercenary
PrimeEvilDamagePercentVSPet - Percentage modifier for the total damage a Prime
Evil boss deals to a player’s pet

PetDamagePercentVSPlayer - Percentage modifier for the total damage a player’s pet
deals to another player

MonsterCEDamagePercent - Percentage modifier that affects how much damage is
dealt to a player by a Monster’s version of Corpse Explosion. For example, when certain
monsters die and explode on death.
StaticFieldMin - Percentage modifier for capping the amount of current Life damage
dealt to monsters by the Sorceress Static Field skill. This field only affects games in
Expansion mode.

GambleRare - The odds to obtain a Rare item from gambling. The game rolls a random
number between 0 to 100000. If that rolled number is less than this value, then the
gambled item will be a Rare item.
GambleSet - The odds to obtain a Set item from gambling. The game rolls a random
number between 0 to 100000. If that rolled number is less than this value, then the
gambled item will be a Set item.
GambleUnique - The odds to obtain a Unique item from gambling. The game rolls a
random number between 0 to 100000. If that rolled number is less than this value, then
the gambled item will be a Unique item.
GambleUber - The odds to make the gambled item be an Exceptional Quality item. The
game rolls a random number between 0 to 10000. This rolled number is then compared
to the following formula:
([Item Level] - [Base Item Level]) * [“GambleUber”] + 1. If the rolled number is less than
this value, then the item becomes an Exceptional Quality item, and the game will roll for
upgrading it to Elite Quality (See “GambleUltra”).
GambleUltra - The odds to make the gambled item be an Elite Quality item. The game
rolls a random number between 0 to 10000. This rolled number is then compared to the
following formula:
([Item Level] - [Base Item Level]) * [“GambleUltra”] + 1. If the rolled number is less than
this value, then the item is upgraded to an Elite Quality item. This only happens if the
item successfully rolled for Exceptional Quality.

experience.txt

Overview

This file controls the experience required for each level by each class

Data Fields

Level - This is a reference field to define the level

Amazon - Controls the experience required for each level with the Amazon class

Sorceress - Controls the experience required for each level with the Sorceress class
Necromancer - Controls the experience required for each level with the Necromancer
class
Paladin - Controls the experience required for each level with the Paladin class
Barbarian - Controls the experience required for each level with the Barbarian class
Druid - Controls the experience required for each level with the Druid class
Assassin - Controls the experience required for each level with the Assassin class

ExpRatio - This multiplier affects the percentage of experienced earned, based on the
level (Calculated in 1024ths by default, but this can be changed by updating the “10”
value in the “Maxlvl” row)

gamble.txt

Overview

This file controls what Item Types will appear as possible items to purchase in the
Gambling UI

Item Types can be added to this list as a potential option for the Gambling system

Data Fields

name - This is a reference field to describe the Item
code - This is a pointer to “code” field from weapons.txt/armor.txt/misc.txt

gems.txt

Overview

This file controls the item modifiers of gems and runes for each item type

This file is used by the following files: weapons.txt, armor.txt, misc.txt

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

name - This is a reference field to define the gem/rune name

letter - Defines the string that is concatenated together in the item tooltip when a rune is
socketed into an item

transform - Controls the color change of the item after being socketed by the gem/rune.
(Uses Color Codes from the reference file colors.txt)

Code Color

0 White

1 Light Grey

2 Dark Grey

3 Black

4 Light Blue

5 Dark Blue

6 Crystal Blue

7 Light Red

8 Dark Red

9 Crystal Red

10 Light Green

11 Dark Green

12 Crystal Green

13 Light Yellow

14 Dark Yellow

15 Light Gold

16 Dark Gold

17 Light Purple

18 Dark Purple

19 Orange

20 Bright White

code - Defines the unique item code used to create the gem/rune

weaponMod1Code (to weaponMod3Code) - Controls the item properties that the
gem/rune provides when socketed into an item with a “gemapplytype” value that equals
0 (Uses the “code” field from Properties.txt)
weaponMod1Param (to weaponMod3Param) - The stat’s “parameter” value
associated with the listed property (weaponMod1Code). Usage depends on the property
function (See the “func” field on Properties.txt)
weaponMod1Min (to weaponMod3Min) - The stat’s “min” value associated with the
listed property (weaponMod1Code). Usage depends on the property function (See the
“func” field on Properties.txt)
weaponMod1Max (to weaponMod3 Max) - The stat’s “max” value to assign to the
listed property (weaponMod1Code). Usage depends on the property function (See the
“func” field on Properties.txt)

helmMod1Code (to helmMod3Code) - Controls the item properties that the gem/rune
provides when socketed into an item with a “gemapplytype” value that equals 1 (Uses
the “code” field from Properties.txt)

helmMod1Param (to helmMod3Param) - The stat’s “parameter” value associated with
the listed property (helmMod1Code). Usage depends on the property function (See the
“func” field on Properties.txt)
helmMod1Min (to helmMod3Min) - The stat’s “min” value associated with the listed
property (helmMod1Code). Usage depends on the property function (See the “func”
field on Properties.txt)
helmMod1Max (to helmMod3Max) - The stat’s “max” value to assign to the listed
property (helmMod1Code). Usage depends on the property function (See the “func”
field on Properties.txt)

shieldMod1Code (to shieldMod3Code) - Controls the item properties that the
gem/rune provides when socketed into an item with a “gemapplytype” value that equals
2 (Uses the “code” field from Properties.txt)
shieldMod1Param (to shieldMod3Param) - The stat’s “parameter” value associated
with the listed property (shieldMod1Code). Usage depends on the property function
(See the “func” field on Properties.txt)
shieldMod1Min (to shieldMod3Min) - The stat’s “min” value associated with the listed
property (shieldMod1Code). Usage depends on the property function (See the “func”
field on Properties.txt)
shieldMod1Max (to shieldMod3Max) - The stat’s “max” value to assign to the listed
property (shieldMod1Code). Usage depends on the property function (See the “func”
field on Properties.txt)

inventory.txt

Overview

This file controls the grid sizes of the inventory slots for the game’s various UI windows.

These values are measured in pixels on the screen.

Data Fields

class - This is a reference field to define the type of inventory screen

invLeft - Starting X coordinate pixel position of the inventory panel
invRight - Ending X coordinate pixel position of the inventory panel (Includes the
“invLeft” value with the inventory width size)
invTop - Starting Y coordinate pixel position of the inventory panel
invBottom - Ending Y coordinate pixel position of the inventory panel (Includes the
“invTop” value with the inventory height size)

gridX - Column number size of the inventory grid, measured in the number of grid
boxes to use
gridY - Column row size of the inventory grid, measured in the number of grid boxes to
use
gridLeft - Starting X coordinate location of the inventory’s left grid side
gridRight - Ending X coordinate location of the inventory’s right grid side (Includes the
“gridLeft” value with the grid width size)
gridTop - Starting Y coordinate location of the inventory’s top grid side
gridBottom - Ending Y coordinate location of the inventory’s bottom grid side (Includes
the “gridTop” value with the grid height size)
gridBoxWidth - Width size of an inventory’s box cell
gridBoxHeight - Height size of an inventory’s box cell

rArmLeft - Starting X coordinate location of the Right Weapon Slot
rArmRight - Ending X coordinate location of the Right Weapon Slot (Includes the
“rArmLeft” value with the “rArmWidth” value)
rArmTop - Starting Y coordinate location of the Right Weapon Slot
rArmBottom - Ending Y coordinate location of the Right Weapon Slot (Includes the
“rArmTop” value with the “rArmHeight” value)
rArmWidth - The pixel width of the Right Weapon Slot
rArmHeight - The pixel Height of the Right Weapon Slot

torsoLeft - Starting X coordinate location of the Body Armor Slot
torsoRight - Ending X coordinate location of the Body Armor Slot (Includes the
“torsoLeft” value with the “torsoWidth” value)
torsoTop - Starting Y coordinate location of the Body Armor Slot
torsoBottom - Ending Y coordinate location of the Body Armor Slot (Includes the
“torsoTop” value with the “torsoHeight” value)
torsoWidth - The pixel width of the Body Armor Slot
torsoHeight - The pixel Height of the Body Armor Slot

lArmLeft - Starting X coordinate location of the Left Weapon Slot
lArmRight - Ending X coordinate location of the Left Weapon Slot (Includes the
“lArmLeft” value with the “lArmWidth” value)
lArmTop - Starting Y coordinate location of the Left Weapon Slot
lArmBottom - Ending Y coordinate location of the Left Weapon Slot (Includes the
“lArmTop” value with the “lArmHeight” value)
lArmWidth - The pixel width of the Left Weapon Slot
lArmHeight - The pixel Height of the Left Weapon Slot

headLeft - Starting X coordinate location of the Helm Slot
headRight - Ending X coordinate location of the Helm Slot (Includes the “headLeft”
value with the “headWidth” value)
headTop - Starting Y coordinate location of the Helm Slot
headBottom - Ending Y coordinate location of the Helm Slot (Includes the “headTop”
value with the “headHeight” value)

headWidth - The pixel width of the Helm Slot
headHeight - The pixel Height of the Helm Slot

neckLeft - Starting X coordinate location of the Amulet Slot
neckRight - Ending X coordinate location of the Amulet Slot (Includes the “neckLeft”
value with the “neckWidth” value)
neckTop - Starting Y coordinate location of the Amulet Slot
neckBottom - Ending Y coordinate location of the Amulet Slot (Includes the “neckTop”
value with the “neckHeight” value)
neckWidth - The pixel width of the Amulet Slot
neckHeight - The pixel Height of the Amulet Slot

rHandLeft - Starting X coordinate location of the Right Ring Slot
rHandLeft - Ending X coordinate location of the Right Ring Slot (Includes the
“rHandLeft” value with the “rHandWidth” value)
rHandTop - Starting Y coordinate location of the Right Ring Slot
rHandBottom - Ending Y coordinate location of the Right Ring Slot (Includes the
“rHandTop” value with the “rHandHeight” value)
rHandWidth - The pixel width of the Right Ring Slot
rHandHeight - The pixel Height of the Right Ring Slot

lHandLeft - Starting X coordinate location of the Left Ring Slot
lHandRight - Ending X coordinate location of the Left Ring Slot (Includes the
“lHandLeft” value with the “lHandWidth” value)
lHandTop - Starting Y coordinate location of the Left Ring Slot
lHandBottom - Ending Y coordinate location of the Left Ring Slot (Includes the
“lHandTop” value with the “lHandHeight” value)
lHandWidth - The pixel width of the Left Ring Slot
lHandHeight - The pixel Height of the Left Ring Slot

beltLeft - Starting X coordinate location of the Belt Slot
beltRight - Ending X coordinate location of the Belt Slot (Includes the “beltLeft” value
with the “beltWidth” value)
beltTop - Starting Y coordinate location of the Belt Slot
beltBottom - Ending Y coordinate location of the Belt Slot (Includes the “beltTop” value
with the “beltHeight” value)
beltWidth - The pixel width of the Belt Slot
beltHeight - The pixel Height of the Belt Slot

feetLeft - Starting X coordinate location of the Boots Slot
feetRight - Ending X coordinate location of the Boots Slot (Includes the “feetLeft” value
with the “feetWidth” value)
feetTop - Starting Y coordinate location of the Boots Slot
feetBottom - Ending Y coordinate location of the Boots Slot (Includes the “feetTop”
value with the “feetHeight” value)
feetWidth - The pixel width of the Boots Slot

feetHeight - The pixel Height of the Boots Slot

glovesLeft - Starting X coordinate location of the Gloves Slot
glovesRight - Ending X coordinate location of the Gloves Slot (Includes the
“glovesLeft” value with the “glovesWidth” value)
glovesTop - Starting Y coordinate location of the Gloves Slot
glovesBottom - Ending Y coordinate location of the Gloves Slot (Includes the
“glovesTop” value with the “glovesHeight” value)
glovesWidth - The pixel width of the Gloves Slot
glovesHeight - The pixel Height of the Gloves Slot

itemratio.txt

Overview

This file determines the quality of items when being spawned. After the game
determines what Item Type should spawn, it then uses this file to calculate the quality of
that item.

These Item Quality checks are used for most item drops in the game such as monster
drops and chest drops.

The following files related to these calculations: ItemTypes.txt, weapons.txt, armor.txt,
misc.txt, Uniqueitems.txt, SetItems.txt, monstats.txt, TreasureClassEx.txt

Data Fields

Function - This is a reference field to define the item ratio name
Version - Defines which game version to use this item ratio (0 = Classic mode | 100 =
Expansion mode)

Uber - Boolean Field. If equals 1, then the item ratio will apply to items with Exceptional
or Elite Quality. If equals 0, then the item ratio will apply to Normal Quality items (This is
determined by the “normcode”, “ubercode” and “ultracode” fields in weapons.txt /
armor.txt)
Class Specific - Boolean Field. If equals 1, then the item ratio will apply to class-based
items (This will compare to the Item Type’s “Class” field to determine if the item is class
specific)

Unique - Base value for calculating the Unique Quality chance. Higher value means
rarer chance. (Calculated first)
UniqueDivisor - Modifier for changing the Unique Quality chance, based on the
difference between the Monster Level and the Item’s base level

UniqueMin - The minimum value of the probability denominator for Unique Quality. This
is compared to the calculated Unique Quality value after Magic Find calculations and is
chosen if it is greater than that value. (Calculated in 128ths)

Set - Base value for calculating the Set Quality chance. Higher value means rarer
chance. (Calculated after Unique)
SetDivisor - Modifier for changing the Set Quality chance, based on the difference
between the Monster Level and the Item’s base level
SetMin - The minimum value of the probability denominator for Set Quality. This is
compared to the calculated Set Quality value after Magic Find calculations and is
chosen if it is greater than that value. (Calculated in 128ths)

Rare - Base value for calculating the Rare Quality chance. Higher value means rarer
chance. (Calculated after Set)
RareDivisor - Modifier for changing the Rare Quality chance, based on the difference
between the Monster Level and the Item’s base level
RareMin - The minimum value of the probability denominator for Rare Quality. This is
compared to the calculated Rare Quality value after Magic Find calculations and is
chosen if it is greater than that value. (Calculated in 128ths)

Magic - Base value for calculating the Magic Quality chance. Higher value means rarer
chance. (Calculated after Rare)
MagicDivisor - Modifier for changing the Magic Quality chance, based on the difference
between the Monster Level and the Item’s base level
MagicMin - The minimum value of the probability denominator for Magic Quality. This is
compared to the calculated Magic Quality value after Magic Find calculations and is
chosen if it is greater than that value. (Calculated in 128ths)

HiQuality - Base value for calculating the High Quality (Superior) chance. Higher value
means rarer chance. (Calculated after Magic)
HiQualityDivisor - Modifier for changing the High Quality (Superior) chance, based on
the difference between the Monster Level and the Item’s base level

Normal - Base value for calculating the Normal Quality chance. Higher value means
rarer chance. (Calculated after Normal, and if this does not succeed in rolling, then the
item is defaulted to Low Quality)
NormalDivisor - Modifier for changing the Normal Quality chance, based on the
difference between the Monster Level and the Item’s base level

Calculations

Item Quality is determined by first calculating the roll chance for a specific Quality. Then
the game will attempt a random roll for that Item Quality. If that roll fails, then the game
will calculate for the next lower Item Quality.
The order of Item Quality calculations is the following: Unique > Set > Rare > Magic >
High Quality (Superior) > Normal > Low Quality

The following information details how the game uses the Data Fields in its calculations.

Step 1: Calculate the Base Probability

The first part of the calculations is to obtain the base probability for rolling the item
quality with the following formula:
Probability = (Quality - (mlvl - ilvl) / Divisor) * 128

This probability value is a ratio divisor, meaning that there is a 1 in probability chance of
the game choosing that Item Quality, so the lower the probability value, then the better
the chance the item will successfully roll that Item Quality. The multiplication with 128 is
for decreasing rounding errors. The Quality value is the
“Unique”/“Set”/“Rare”/“Magic”/“HiQuality”/“Normal” Data Field. The mlvl value is the
Monster Level, which depends on the current area level and game difficulty (this can
also be the level for the chest drop). The ilvl value is the Base Item Level (See the
“level” field in the weapons.txt/armor.txt/misc.txt or the “lvl” field in
UniqueItems.txt/SetItems.txt). The Divisor value is the
“UniqueDivisor”/“SetDivisor”/“RareDivisor”/“MagicDivisor”/“HiQualityDivisor”/“NormalDivi
sor” Data Field.

Step 2: Calculate Magic Find

The game will then obtain the character’s magic find bonus from items. If the current
calculation is for Unique/Set/ Rare Quality items and the magic find item bonus exceeds
110%, then the character’s magic find will be modified with diminishing returns:
MagicFind = 100 + MF * dim / (MF + dim)

The MF value is the character’s magic find bonus percentage value plus the baseline
default 100 value (See “item_magicbonus” in ItemStatCost.txt). The dim value is a
special modifier for adding diminishing returns to the magic find bonus, which differs
based on the Item Quality being calculated (Unique = 250, Set = 500, Rare = 600)

After calculating the proper magic find value, the probability value is modified with the
following formula:
Probability = Probability * 100 / MagicFind

This will reduce the Probability value, giving the Item Quality a higher chance to be
successfully rolled.

Step 3: Calculate Probability with Treasure Class

After calculating the baseline probability with the magic find bonus, the game will then
compare this value with the minimum value for the Item Quality to cap it from reducing
any further (See “UniqueMin”/“SetMin”/“RareMin”/“MagicMin” Data Fields). High Quality
(Superior) and Normal Quality do not have a minimum value.

The game will then modify the probability with the value from the related Treasure
Class:
Probability = Probability - Probability * TreasureClass / 1024)

The TreasureClass value is a modifier for this Item Quality based on the Treasure
Class being used (See the “Unique”/“Set”/“Rare”/“Magic” field from the
TreasureClassEx.txt file)

Step 4: Roll for the Item Quality

Finally, after calculating the overall value of the probability for the Item Quality, the
game will then find a random number between 0 and the probability value. If that
random value is between 0 and 128, then the item has successfully rolled that specific
Item Quality. Otherwise, the calculations will move on to checking for the next lower
Item Quality.

ItemStatCost.txt

Overview

This file controls the functionalities for each possible stat on a unit

These defined stats are used to form modifiers for the Properties.txt file

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Stat - Defines the unique pointer for this stat, which is used in other files

Send Other - Boolean Field. If equals 1, then only add the stat to a new monster if the
that has no state and has an item mask. If equals 0, then ignore this.
Signed - Boolean Field. If equals 1, then the stat will be treated as a signed integer,
meaning that it can be either a positive or negative value. If equals 0, then stat will be
treated as an unsigned integer, meaning that it can only be a positive value. This only
affects stats with state bits.
Send Bits - Controls how many bits of data for the stat to send to the game client,
essentially controlling the max value possible for the stat. Signed values should have
less than 32 bits, otherwise they will be treated as unsigned values.
Send Param Bits - Controls how many bits of data for the stat’s parameter value to
send to the client for a unit. This value is always treated as a signed integer.

UpdateAnimRate - Boolean Field. If equals 1, then the stat will notify that game to
handle and adjust the speed of the unit when the stat changes. If equals 0, then ignore
this. This is only checked for stats with states or for specific skill server functions
including 30, 61, 71.

Saved - Boolean Field. If equals 1, then this state will be inserted in the change list to
be stored in the Character Save file. If equals 0, then ignore this.
CSvSigned - Boolean Field. If equals 1, then the stat will be saved as a signed integer
in the Character Save file. If equals 0, then the stat will be saved as an unsigned integer
in the Character Save file. This is only used if the “Saved” field is enabled.
CSvBits - Controls how many bits of data for the stat to send to save in the Character
Save file. Signed values should have less than 32 bits, otherwise they will be treated as
unsigned values. This is only used if the “Saved” field is enabled.
CSvParam - Controls how many bits of data for the stat’s parameter value to save in
the Character Save file. This value is always treated as a signed integer. This is only
used if the “Saved” field is enabled.

fCallback - Boolean Field. If equals 1, then any changes to the stat will call the Callback
function which will update thgecharacter’s states, skills, or item events based on the
changed stat value. If equals 0, then ignore this.

fMin - Boolean Field. If equals 1, then the stat will have a minimum value that cannot be
reduced further than that value (See “MinAccr” field). If equals 0, then ignore this.
MinAccr - The minimum value of a stat. This is only used if the “fMin” field is enabled.

Encode - Controls how the stat will modify an item’s buy, sell, and repair costs. This
field uses a code value to select a function to handle the calculations. This field relies on
the “Add”, “Multiply” and “ValShift” fields. The baseline Stat Value is first modified using
the “ValShift” field to shift the bits. This Stat Value is then used in the calculations by
one of the selected functions.

Code Parameters Description

0
(or
empty)

Add
Multiply

Buy Cost += [Stat Value] * [“Multiply”] / 1024 + [“Add”]
Sell Cost += [Stat Value] * [“Multiply”] / 1024 + [“Add”]
Repair Cost += [Stat Value] * [“Multiply”] / 1024 + [“Add”]

1 Use the stat’s parameter value to determine the skill ID
used.
Use the stat’s value to determine the skill level.
Obtain the “cost mult” and “cost add” values from the skill
linked in this stat’s parameter (see skills.txt).
The Stat Value is considered the skill’s level.
Buy Cost += [Stat Value] * [“cost mult”] / 1024 + [“cost
add”]
Sell Cost += [Stat Value] * [“cost mult”] / 4096 + [“cost add”]
Repair Cost += [Stat Value] * [“cost mult”] / 1024 + [“cost
add”]

2 Use the stat’s parameter value to determine both the skill
ID and skill level.
Obtain the “cost mult” and “cost add” values from the
determined skill ID (see skills.txt).
Buy Cost += [Stat Value] * [“cost mult”] / 1024 + [“cost
add”]
Sell Cost += [Stat Value] * [“cost mult”] / 4096 + [“cost add”]
Repair Cost += [Stat Value] * [“cost mult”] / 1024 + [“cost
add”]

3 Same as function 2

4 Add
Multiply

Obtains the stat’s min and max values based on the By
Time bit masks and uses them to calculate the average
value or Baseline stat value.
Buy Cost += [Baseline] * [“Multiply”] / 1024 + [“Add”]
Sell Cost += [Baseline] * [“Multiply”] / 1024 + [“Add”]
Repair Cost += [Baseline] * [“Multiply”] / 1024 + [“Add”]

Add - Used as a possible parameter value for the “Encode” function. Flat integer
modification to the Unique item’s buy, sell, and repair costs. This is added after the
“Multiply” field has modified the costs.
Multiply - Used as a possible parameter value for the “Encode” function. Multiplicative
modifier for the item’s buy, sell, and repair costs. The way this value is used depends on
the Encode function selected.

ValShift - Used to shift the stat’s input value by a number of bits to obtain the actual
value when performing calculations (such as for the “Encode” function).

1.09-Save Bits - Controls how many bits of data are allocated for the overall size of the
stat when saving/reading an item from a Character Save. This value can be treated as a
signed or unsigned integer, depending on the stat. This field is only used for items
saved in a game version of Patch 1.09d or older.
1.09-Save Add - Controls how many bits of data are allocated for the stat’s value when
saving/reading an item from a Character Save. This value is treated as a signed integer.
This field is only used for items saved in a game version of Patch 1.09d or older.
Save Bits - Controls how many bits of data are allocated for the overall size of the stat
when saving/reading an item from a Character Save. This value can be treated as a
signed or unsigned integer, depending on the stat.
Save Add - Controls how many bits of data are allocated for the stat’s value when
saving/reading an item from a Character Save. This value is treated as a signed integer.
Save Param Bits - Controls how many bits of data for the stat’s parameter value to use
when saving/reading an item from a Character Save. This value is always treated as an
unsigned integer.

keepzero - Boolean Field. If equals 1, then this stat will remain on the stat change list,
when being updated, even if that stat value is 0. If equals 0, then ignore this.

op - This is the stat operator, used for advanced stat modification when calculating the
value of a stat. This can involves using this stat and its value to modify another stat’s
value. This use a function ID to determine what to calculate.

Code Parameters Description

0
(or
empty)

 No Operator. Just add the stat normally

1 op stat1
op stat2
op stat3

Percent Operator. Gets the value of “op stat#” and
multiplies it by a percentage increase equal to this stat’s
value:
[“op stat#”] += [“op stat#”] * value / 100

2 op param
op base
op stat1
op stat2
op stat3

By Level Operator. Gets value of “op stat#” and uses it as a
multiplier with “op param” as the divisor:
[“op stat#”] += [“op stat#”] * [“op base”] << [“op param”]

3 op param
op base
op stat1
op stat2
op stat3

By Level Percent Operator. Gets value of “op stat#” and
uses it as a multiplier with “op param” as the divisor. Then it
uses this value as a percentage increase to “op stat#”:
percent = [“op stat#”] * [“op base”] << [“op param”]
[“op stat#”] = [“op stat#”] * percent / 100

4 op param
op base
op stat1
op stat2
op stat3

By Level Source Operator. Gets value of “op stat#” for the
item (not the unit) and uses it as a multiplier with “op
param” as the divisor:
[“op stat#”] += [“op stat#”] * [“op base”] << [“op param”]

5 op param
op base
op stat1
op stat2
op stat3

By Level Source Percent Operator. Gets value of “op stat#”
for the item (not the unit) and uses it as a multiplier with “op
param” as the divisor. Then it uses this value as a
percentage increase to “op stat#”:
percent = [“op stat#”] * [“op base”] << [“op param”]
[“op stat#”] = [“op stat#”] * percent / 100

6 op stat1
op stat2
op stat3

By Time Operator. Gets the value of “op stat#” and
increases it by a delta value which depends on game’s time
of day. The delta is calculated by using the stat’s min and
max as a range of increase/decrease and biasing this value
with the current progress of game’s time of day
[“op stat#”] += [“op stat#”] * [delta]

7 op stat1
op stat2
op stat3

By Time Percent Operator. Gets the value of “op stat#” and
multiplies it by a percentage. This percentage is determined
by obtaining “op stat#” and a delta value which depends on
game’s time of day. The delta is calculated by using the
stat’s min and max as a range of increase/decrease and
biasing this value with the current progress of game’s time
of day
percent = [“op stat#”] * [delta]

[“op stat#”] = [“op stat#”] * percent / 100

8 op stat1
op stat2
op stat3

Energy Operator. This will only apply for stats on the
player. Gets the value of “op stat#” and multiplies it by the
related “ManaPerMagic” field from the charstats.txt file.
This is then bit shifted by the baseline Mana bit value,
MANA_SHIFT = 8, with the fourths value calculation from
the “ManaPerMagic” field.
[“op stat#”] = [“op stat#”] * [“ManaPerMagic”] <<
(MANA_SHIFT - 2)

9 op stat1
op stat2
op stat3

Vitality Operator. This will only apply for stats on the player.
If the stat is “maxstamina”, then the operator will get the
value of “op stat#” and multiply it by the related
“StaminaPerVitality” field from the charstats.txt file. This is
then bit shifted by the baseline Stamina bit value,
STAMINA_SHIFT = 8, with the fourths value calculation
from the “StaminaPerVitality” field:
[“op stat#”] = [“op stat#”] * [“StaminaPerVitality”] <<
(STAMINA_SHIFT - 2)

If the stat is not “maxstamina”, then the operator will get the
value of “op stat#” and multiply it by the related
“LifePerVitality” field from the charstats.txt file. This is then
bit shifted by the baseline Life bit value, LIFE_SHIFT = 8,
with the fourths value calculation from the “LifePerVitality”
field:
[“op stat#”] = [“op stat#”] * [“LifePerVitality”] <<
(LIFE_SHIFT - 2)

10 Currently not being used. Does nothing.

11 op stat1
op stat2
op stat3

Player Percent Operator. This will only apply for stats on
units. Gets the value of “op stat#” and multiplies it by a
percentage increase equal to this stat’s value:
[“op stat#”] += [“op stat#”] * value / 100

12 Currently not being used. Does nothing.

13 op stat1
op stat2
op stat3

Item Percent Operator. This will only apply for stats on
items. Gets the value of “op stat#” and multiplies it by a
percentage increase equal to this stat’s value:
[“op stat#”] += [“op stat#”] * value / 100

op param - Used as a possible parameter value for the “op” function.
op base - Used as a possible parameter value for the “op” function.
op stat1 (to opstat3) - Used as a possible parameter value for the “op” function.

direct - Boolean Field. If equals 1, then when the stat is being updated in certain skill
functions having to do with state changes, the stat will update in relation to its “maxstat”
field to ensure that it never exceeds that value. If equals 0, then ignore this, and the stat
will simply update in these cases. This only applies to skills that use skill server function
65, 66, 81, and 82.

maxstat - Controls which stat is associated with this stat to be treated as the maximum
version of this stat. This means that 2 stats are essentially linked so that there can be a
current version of the stat and a maximum version to control the cap of stat’s value. This
is used for Life, Mana, Stamina, and Durability. This field relies on the “direct” field to be
enabled unless it is being used for the healing potion item spell.
damagerelated - Boolean Field. If equals 1, then this stat will be exclusive to the item
and will not add to the unit. If equals 0, then ignore this, and the stat will always add to
the unit. This is typically used for weapons and is important when dual wielding
weapons so that when a unit attacks, then one weapon’s stats do not stack with another
weapon’s stats.

itemevent1 & itemevent2 - Uses an event that will activate the specified function
defined by “itemeventfunc#”. This points to the ID of an event defined in the events.txt
file.

event Description

(empty) Do nothing.

hitbymissile Unit is hit by a missile

damagedinmelee Unit takes damage from a melee attack

damagedbymissile Unit takes damage from a missile

attackedinmelee Unit is attacked by a melee attack

doactive Unit used a skill

domeleedamage Unit dealt damage with a melee attack

domissiledamage Unit dealt damage with a missile

domeleeattack Unit used a melee attack

domissileattack Unit used a missile attack

kill Unit killed another Unit

killed Unit dies

absorbdamage Unit takes damage

levelup Unit gained a Level

death Monster dies

itemeventfunc1 & itemeventfunc2 - Specifies the function to use after the related item
event occurred. Functions are defined by a numeric ID code. This is only applied based
on the “itemevent#” field definition.

Code Description

0
(or
empty)

Do nothing.

1 Applies the effects of the Sorceress Chilling Armor skill

2 Applies the effects of the Sorceress Frozen Armor skill

3 Applies the effects of the Sorceress Shiver Armor skill

4 Applies the effects of the Necromancer Iron Maiden skill, causing damage
taken to be dealt to the attacker

5 Applies the effects of the Necromancer Life Tap skill on monsters. Usable
only on monsters when cast by players.

6 Attacker Takes Physical Damage

7 Applies knockback on the target, moving the target backwards from the
attacker and being briefly stunned during this time. Chances depend on
the “small” and “large” flags from the monstats2.txt file.

8 Applies the effects Barbarian Howl skill on monsters, causing them to run
away in fear. Does not work on Champion or Unique monsters.

9 Applies the effects of the Necromancer Dim Vision skill to a target.
Effectiveness is reduced from missile attacks.

10 Attacker Takes Lightning Damage

11 Attacker Takes Fire Damage

12 Attacker Takes Cold Damage

13 A percentage of damage taken will also reduce the user’s mana by that
amount

14 Applies the Freeze effect on the target. Effectiveness is reduced from
missile attacks.

15 Applies Open Wounds damage on the target, which causes life damage
over time

16 Applies Crushing Blow damage on the target. Damage depends on if the
target is a Player, Mercenary, Boss monster, Unique monster, Champion
monster, or normal monster.

17 Restores mana to the user that performed the kill

18 Restores life to the user that performed the kill on a Demon monster

19 • Applies the slow state on the target which reduces that target’s attack
speed and movement speed

• If the target is a player, Champion monster, Unique Monster, Boss, or
mercenary, then the max slow value is 50

• If the target is a Super monster, then the max slow value is 75

• Otherwise, the max slow value is 90.

20 Use a skill against the target after the user is attacks or hits the enemy

21 Use a skill against the attacker after the user is hit by an attack. If there is
no attacker, then the skill is cast at the user’s location

22 Applies the effects of the Necromancer Bone Armor skill, absorbing
physical damage taken

23 • Transfers damage dealt by a pet as healing that is split between the
pet and its owner (Used by the Necromancer Blood Golem pet)

• Uses the linked skill’s “calc2” field from the skills.txt file to determine
the total healing percentage

• Uses the linked skill’s “calc3” field from the skills.txt file to determine
the healing percentage that is split to the pet’s owner

24 • Absorb a percentage any damage taken and deals that damage to
Mana instead of Life (Used by the Sorceress Energy Shield skill)

• Uses the linked skill’s “calc1” and “calc2” fields from the skills.txt file to
determine the mana to Damage ratio conversion

25 Apply the effects of the Druid Cyclone armor skill, absorbing Fire, Cold,
and Lightning damage taken

26 • Transfers damage taken from the pet to its owner (Used by the
Necromancer Blood Golem pet)

• The percentage of damage transferred is defined in the linked skill’s
“Param5” field from the skills.txt file

27 • Applies the “item_slow” stat which reduces the target’s attack speed
and movement speed (Used by the Necromancer Clay Golem pet)

• If the target is a Champion or Unique monster, then the max slow
value is 50. Otherwise, the max slow value is 90.

28 Restores life to the user that performed a kill

29 Applies the “restinpeace” state which essentially the corpse of a killed
monster, making it unusable

30 Cast a skill when the item event occurs, either with without a target

31 Reanimates the targeted enemy as a pet monster for the user. Only
applies on units classified as monsters, and not Champions or Uniques.

32 Use a skill to deal area radius damage around the user

33 Use a skill’s linked sub-skill from the “sumskill1” in the skills.txt file

descpriority - Controls how this stat is sorted in item tooltips. This field is compared to
the same field on other stats to determine how to order the stats. The higher the value
means that the stat will be sorted higher than other stats. If more than 1 stat has the
same “descpriority” value, then they will be listed in the order defined in this data file.

descfunc - Controls how the stat is displayed in tooltips. Uses an ID value to select a
description function to format the string value.

Code Parameters Description

0 No display. Do nothing.

1 descval
descstrpos
descstrneg

Plus or Minus

• If value > 0, “+[value] [descstr]”

• If value < 0, “-[value] [descstr]”

2 descval
descstrpos
descstrneg

Percent

• “[value] [descstr]”

3 descval
descstrpos
descstrneg

String

• “[value] [descstr]”

4 descval
descstrpos
descstrneg

Plus Percent

• “+[value]% [descstr]”

5 descval
descstrpos
descstrneg

Percent 128

• “+[value * 100 / 128]% [descstr]”

6 descval
descstrpos

Plus or Minus Per Level

• If value > 0, “+[value] [descstr] [descstr2]”

descstrneg
descstr2

• If value < 0, “-[value] [descstr] [descstr2]”

7 descval
descstrpos
descstrneg
descstr2

Percent Per Level

• “[value]% [descstr] [descstr2]”

8 descval
descstrpos
descstrneg
descstr2

Plus Percent Per Level

• “+[value]% [descstr] [descstr2]”

9 descval
descstrpos
descstrneg
descstr2

String Per Level

• “[value] [descstr] [descstr2]”

10 descval
descstrpos
descstrneg
descstr2

Percent 128 Per Level

• “[value * 100 / 128]% [descstr] [descstr2]”

11 Repair

• Uses the string ModStre9t and inserts the value into this
string

12 descval
descstrpos
descstrneg

Plus Sub One

• If value > 1, then use “+[value] [descstr]”

• Else, use “[value] [descstr]” or “-[value] [descstr]”

13 Add Class Skill

• Uses the “StrAllSkills” from the charstats.txt file

14 Add Tab Skill

• Uses “StrSkillTab#” from the charstats.txt file based on
related tab being modified

15 descstrpos Proc Skill

• Gets the skill name, skill level, and chance percent to
insert into the “descstrpos” string

16 descstrpos
descstrneg

Aura

• Gets the skill name, and uses the stat’s value for the skill
level and inserts these values into the designated “descstr”
string

17 descstrpos
descstrneg

Plus Minus By Time

• Gets the proper value based on the time of day and
inserts this value into the “descstr” string

• Uses the following strings for the second part of the
description, depending on the time selected: ModStre9d,
ModStre9e, ModStre9f, ModStre9g

18 descstrpos
descstrneg

(Same as function 17)

19 descstrpos Sprintf Num

descstrneg
descstr2

• Uses the Sprintf string function with the designated
“descstr” string and adds “descstr2” if that value is not
empty

20 descval
descstrpos
descstrneg

Minus Percent

• “[value * -1]% [descstr]”

21 descstrpos
descstrneg
descstr2

Minus Percent Per Level

• “[value * -1]% [descstr] [descstr2]”

• If “descstr2” is empty, then default to using the
increaseswithplaylevelX string

22 descstrpos
descstrneg

Versus Monster Percent

• Uses “strplur” from the MonType.txt file based on the
monster type selected, and inserts this value into the
designated “descstr” string

23 descstrpos
descstrneg

Reanimate

• Obtains the related “NameStr” string from the monstats.txt
file and inserts this string into the designated “descstr”
string

24 descstrpos
descstrneg

Charges

• Obtains the skill, skill level, max charges, and current
charges and inserts these values into the designated
“descstr” string

25 descval
descstrpos
descstrneg

Minus

• If desval equals 1, then use “+[value * -1] [descstr]”

• If desval equals 2, then use “[descstr] +[value * -1]”

26 descval
descstrpos
descstrneg
descstr2

Minus Per Level

• (Same as function 25)

27 descstrpos
descstrneg

Single Skill

• Obtains the “str name” field from skilldesc.txt file and the
“StrClassOnly” field from the charstats.txt file

• Uses the stat value as the skill level

• Combines these values into the designated “descstr”
string

28 descstrpos
descstrneg

Non Class Skill

• Obtains the “str name” field from skilldesc.txt file

• Uses the stat value as the skill level

• Combines these values into the designated “descstr”
string

descval - Used as a possible parameter value for the “descfunc” function. This controls
the how the value of the stat is displayed.

Code Description

0 Do not show the value of the stat

1 Shows the value of the stat at the start of its description

2 Shows the value of the stat at the end of its description

descstrpos - Used as a possible parameter value for the “descfunc” function. This uses
a string to display the item stat in a tooltip when its value is positive.
descstrneg - Used as a possible parameter value for the “descfunc” function. This uses
a string to display the item stat in a tooltip when its value is negative.
descstr2 - Used as a possible parameter value for the “descfunc” function. This uses a
string to append to an item stat’s string in a tooltip.

dgrp - Assigns the stat to a group ID value. If all stats with a matching “dgrp” value are
applied on the unit, then instead of displaying each stat individually, the group
description will be applied instead (see “dgrpfunc” field)
dgrpfunc - Controls how the shared group of stats is displayed in tooltips. Uses an ID
value to select a description function to format the string value. This function IDs are
exactly the same as the “descfunc” field, see that description for more details.
dgrpval - Used as a possible parameter value for the “dgrpfunc” function. This controls
the how the value of the stat is displayed. (Functions the same as the “descval” field)
dgrpstrpos - Used as a possible parameter value for the “dgrpfunc” function. This uses
a string to display the item stat in a tooltip when its value is positive.
dgrpstrneg - Used as a possible parameter value for the “dgrpfunc” function. This uses
a string to display the item stat in a tooltip when its value is negative.
dgrpstr2 - Used as a possible parameter value for the “dgrpfunc” function. This uses a
string to append to an item stat’s string in a tooltip.

stuff - Used as a bit shift value for handling the conversion of skill IDs and skill levels to
bit values for the stat. Controls the numeric range of possible skill IDs and skill levels for
charge based items. This value cannot be less than or equal to 0, or greater than 8,
otherwise it will default to 6. The row that this value appears in the data file is unrelated,
since this is a universally applied value.

advdisplay - Controls how the stat appears in the Advanced Stats UI

Code Description

0
(or empty)

The stat will never appear on the Advanced Stats UI

1 The stat will always show on the Advanced Stats UI

2 The stat will only show on the Advanced Stats UI if the value is greater than 0

ItemTypes.txt

Overview

This file controls the general statistics for each type of item, which is then used for the
item type fields in other files

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

ItemType - This is a reference field to define the Item Type name
Code - Defines the unique pointer for this Item Type, which is used by the following
files: weapons.txt, armor.txt, misc.txt, cubemain.txt, skills.txt, treasureclassex.txt

Equiv1 & Equiv2 - Points to the index of another Item Type to reference as a parent.
This is used to create a hierarchy for Item Types where the parents will have more
universal settings shared across the related children
Repair - Boolean Field. If equals 1, then the item can be repaired by an NPC in the
shop UI. If equals 0, then the item cannot be repaired.

Body - Boolean Field. If equals 1, then the item can be equipped by a character (also
will require the “BodyLoc1” & “BodyLoc2” fields as parameters). If equals 0, then the
item can only be carried in the inventory, stash, or Horadric Cube.

BodyLoc1 & BodyLoc2 - These are required parameters if the “Body” field is enabled.
These fields specify the inventory slots where the item can be equipped.

Code Description

(empty) None

head Head

neck Neck

tors Torso

rarm Right Arm

larm Left Arm

rrin Right Ring

lrin Left Ring

belt Belt

feet Feet

glov Gloves

Shoots - Points to the index of another Item Type as the required equipped Item Type
to be used as ammo
Quiver - Points to the index of another Item Type as the required equipped Item Type to
be used as this ammo’s weapon

Throwable - Boolean Field. If equals 1, then it determines that this item is a throwing
weapon. If equals 0, then ignore this.

Reload - Boolean Field. If equals 1, then the item (considered ammo in this case) will
be automatically transferred from the inventory to the required “BodyLoc” when another
item runs out of that specific ammo. If equals 0, then ignore this.
ReEquip - Boolean Field. If equals 1, then the item in the inventory will replace a
matching equipped item if that equipped item was destroyed. If equals 0, then ignore
this.
AutoStack - Boolean Field. If equals 1, then if the player picks up a matching Item
Type, then they will try to automatically stack together. If equals 0, then ignore this.

Magic - Boolean Field. If equals 1, then this item will always have the Magic quality
(unless it is a Quest item). If equals 0, then ignore this.
Rare - Boolean Field. If equals 1, then this item can spawn as a Rare quality. If equals
0, then ignore this.
Normal - Boolean Field. If equals 1, then this item will always have the Normal quality.
If equals 0, then ignore this.
Beltable - Boolean Field. If equals 1, then this item can be placed in the character’s belt
slots. If equals 0, then ignore this.

MaxSockets1 - Determines the maximum possible number of sockets that can be
spawned on the item when the item level is greater than or equal to 1 and less than or
equal to the “MaxSocketsLevelThreshold1” value. The number of sockets is capped by
the “gemsockets” value from the weapons.txt/armor.txt/misc.txt file.
MaxSocketsLevelThreshold1 - Defines the item level threshold between using the
“MaxSockets1” and “MaxSockets2” field
MaxSockets2 - Determines the maximum possible number of sockets that can be
spawned on the item when the item level is greater than the
“MaxSocketsLevelThreshold1” value and less than or equal to the
“MaxSocketsLevelThreshold2”. The number of sockets is capped by the “gemsockets”
value from the weapons.txt/armor.txt/misc.txt file.
MaxSocketsLevelThreshold2 - Defines the item level threshold between using the
“MaxSockets2” and “MaxSockets3” field
MaxSockets3 - Determines the maximum possible number of sockets that can be
spawned on the item when the item level is greater than the
“MaxSocketsLevelThreshold2” value. The number of sockets capped by the
“gemsockets” value from the weapons.txt/armor.txt/misc.txt file.

TreasureClass - Boolean Field. If equals 1, then allow this Item Type to be used in
default treasure classes. If equals 0, then ignore this.
Rarity - Determines the chance for the item to spawn with stats, when created as a
random Weapon/Armor/Misc item. Used in the following formula: IF RANDOM(0,
([“Rarity”] - [Current Act Level])) > 0, THEN spawn stats

StaffMods - Determines if the Item Type should have class specific item skill modifiers

Code Description

(empty) No preference

ama Amazon skills

bar Barbarian skills

pal Paladin skills

nec Necromancer skills

sor Sorceress skills

dru Druid skills

ass Assassin skills

Class - Determines if this item should be useable only by a specific class

Code Description

(empty) Any Class

ama Amazon only

bar Barbarian only

pal Paladin only

nec Necromancer only

sor Sorceress only

dru Druid only

ass Assassin only

VarInvGfx - Tracks the number of inventory graphics used for this item type. This
number much match the number of “InvGfx” fields used.
InvGfx1 (to InvGfx6) - Defines a DC6 file to use for the item’s inventory graphics. The
amount of this fields used should match the value used in “VarInvGfx”

StorePage - Uses a code to determine which UI tab page on the NPC shop UI to
display this Item Type, such as after it is sold to the NPC.

Code Description

armo Armor Page

weap Weapons Page

mag Magic Page

misc Misc Page

dualwieldclass1 (to dualwieldclass7) - Determines if the weapon can be dual wielded
by a defined class. There are 7 fields to potentially allow all 7 classes.

Code Description

ama Amazon

bar Barbarian

pal Paladin

nec Necromancer

sor Sorceress

dru Druid

ass Assassin

hireling.txt

Overview

This file controls the unit statistics for player mercenaries and their related functions

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Hireling - This is a reference field to define the Hireling name
Version - Defines which game version to use this hireling (0 = Classic mode | 100 =
Expansion mode)
Id - The unique identification number to define each hireling type
Class - This refers to the “hcIdx” field in MonStats.txt, which defines the base type of
unit to use for the hireling

Act - The Act that the hireling belongs to (values 1 to 5 equal Act 1 to Act 5,
respectively)
Difficulty - The difficulty mode associated with the hireling (1 = Normal | 2 = Nightmare
| 3 = Hell)
Level - The starting level of the unit

Seller - This refers to the “hcIdx” field in MonStats.txt, which defines the unit NPC that
sells this hireling
NameFirst & NameLast - These fields define a string key which the game uses as a
sequential range of string IDs from “NameFirst” to “NameLast” to randomly generate as
hireling names. (Max name length is 48 characters)

Gold - The initial cost of the hireling. This is used in the following calculation to generate
the full hire price: Cost = [“Gold”] * (100 + 15 * [Difference of Current Level and “Level”])
/ 100
Exp/Lvl - This modifier is used in the following calculation to determine the amount of
Experience need for the hireling’s next level: [Current Level] + [Current Level] * [Current
Level + 1] * [“Exp/Lvl”]
HP - The starting amount of Life at base Level
HP/Lvl - The amount of Life gained per Level
Defense - The starting amount of Defense at base Level
Def/Lvl - The amount of Defense gained per Level
Str - The starting amount of Strength at base Level
Str/Lvl - The amount of Strength gained per Level (Calculated in 8ths)
Dex - The starting amount of Dexterity at base Level
Dex/Lvl - The amount of Dexterity gained per Level (Calculated in 8ths)
AR - The starting amount of Attack Rating at base Level
AR/Lvl - The amount of Attack Rating gained per Level
Dmg-Min - The starting amount of minimum Physical Damage for attacks

Dmg-Max - The starting amount of maximum Physical Damage for attacks
Dmg/Lvl - The amount of Physical Damage gained per level, to be added to “Dmg-Min”
and “Dmg-Max” (Calculated in 8ths)
ResistFire - The starting amount of Fire Resistance at base Level
ResistFire/Lvl - The amount of Fire Resistance gained per Level (Calculated in 4ths)
ResistCold - The starting amount of Fire Resistance at base Level
ResistCold/Lvl - The amount of Fire Resistance gained per Level (Calculated in 4ths)
ResistLightning - The starting amount of Fire Resistance at base Level
ResistLightning/Lvl - The amount of Fire Resistance gained per Level (Calculated in
4ths)
ResistPoison - The starting amount of Fire Resistance at base Level
ResistPoison/Lvl - The amount of Fire Resistance gained per Level (Calculated in
4ths)

HireDesc - This accepts a string key, which is used to display as the special description
of the hireling in the hire UI window

DefaultChance - This is the chance for the hireling to attack with his/her weapon
instead of using a Skill. All Chance values are summed together as a denominator value
for a random roll to determine which skill to use.
Skill1 (to Skill6) - Points to a skill from the “skill” field in the skills.txt file. This gives the
hireling the Skill to use (requires “Mode#”, “Chance#”, “ChancePerLvl#”)

Mode1 (to Mode6) - Uses a monster mode to determine the hireling’s behavior when
using the related Skill (Uses the numeric ID of the monster mode, not the Token)

ID Token Description

0 DT Death / Reset

1 NU Neutral

2 WL Walk

3 GH Get Hit

4 A1 Attack 1

5 A2 Attack 2

6 BL Block

7 SC Cast

8 S1 Skill 1

9 S2 Skill 2

10 S3 Skill 3

11 S4 Skill 4

12 DD Dead

13 GH Knockback

14 xx Sequence

15 RN Run

Chance1 (to Chance6) - This is the base chance for the hireling to use the related Skill.
All Chance values are summed together as a denominator value for a random roll to
determine which skill to use.
ChancePerLvl1 (to ChancePerLvl6) - This is the chance for the hireling to use the
related Skill, affected by the difference in the hireling’s current Level and the hireling’s
“Level” field. All Chance values are summed together as a denominator value for a
random roll to determine which skill to use. Each skill Chance is calculated with the
following formula: [“Chance#”] + [“ChancePerLvl#”] * [Difference of Current Level and
“Level”] / 4
Level1 (to Level6) - The starting Level for the related Skill.
LvlPerLvl1 (to LvlPerLvl6) - A modifier to increase the related Skill level for every
Level gained. This is used in the following calculated to determine the current skill level:
[Current Skill Level] = FLOOR([“Level”] + (([“LvlPerLvl”] * [Difference of Current Level
and “Level”]) / 32))

HiringMaxLevelDifference - This is used to generate a range with this value plus and
minus with the player’s current Level. In the hiring UI window, hirelings start with a
random Level that is between this range.
resurrectcostmultiplier - A modifier used to calculate the hireling’s current resurrect
cost. Used in the following formula: [Resurrect Cost] = [Current Level] * [Current Level] /
[“resurrectcostdivisor”] * [“resurrectcostmultiplier”]
resurrectcostdivisor - A modifier used to calculate the hireling’s current resurrect cost.
Used in the following formula: [Resurrect Cost] = [Current Level] * [Current Level] /
[“resurrectcostdivisor”] * [“resurrectcostmultiplier”]
resurrectcostmax - This is the maximum Gold cost to resurrect this hireling

Levels.txt

Overview

This file controls how the game controls the area levels, including how the level is built,
what rules are allowed on the level, and what monsters/objects can spawn on the level.

This file uses the following files: AutoMap.txt, LvlMaze.txt, LvlPrest.txt, LvlSub.txt,
LvlTypes.txt, LvlWarp.txt, monstats.txt, Objgroup.txt

Data Fields

Name - Defines the unique name pointer for the area level, which is used in other files
Id - Defines the unique numeric ID for the area level, which is used in other files
Pal - Defines which palette file to use for the area level. This uses index values from 0
to 4 to convey Act 1 to Act 5.

Act - Defines the Act number that the area level is a part of. This uses index values
from 0 to 4 to convey Act 1 to Act 5.

QuestFlag - Controls what quest record that the player needs to have completed before
being allowed to enter this area level, while playing in Classic Mode. Each quest can
have multiple quest records, and this field is looking for a specific quest record from a
quest.

QuestFlagEx - Controls what quest record that the player needs to have completed
before being allowed to enter this area level, while playing in Expansion Mode. Each
quest can have multiple quest records, and this field is looking for a specific quest
record from a quest.

Code Description

0 Act 1 Prologue Seen

1 Den of Evil Complete

2 Sisters’ Burial Grounds Complete

3 Tools of the Trade Complete

4 The Search for Cain Complete

5 The Forgotten Tower Complete

6 Sisters to the Slaughter Complete

7 Act 1 Traversed

8 Act 2 Prologue Seen

9 Radament’s Lair Complete

10 The Horadric Staff Complete

11 The Tainted Sun Complete

12 The Arcane Sanctuary Complete

13 The Summoner Complete

14 The Seven Tombs Complete

15 Act 2 Traversed

16 Act 3 Prologue Seen

17 Lam Esen’s Tome Complete

18 Khalim’s Will Complete

19 Blade of the Old Religion Complete

20 The Golden Bird Complete

21 The Blackened Temple Complete

22 The Guardian Complete

23 Act 3 Traversed

24 Act 4 Prologue Seen

25 The Fallen Angel Complete

26 Terror’s End Complete

27 The Hellforge Complete

28 Act 4 Traversed

29 Rogue Warning Complete

30 Guard in Town Warning Complete

31 Guard in Desert Warning Complete

32 Dark Wanderer Seen

33 Angel Warning Complete

34 Act 5 Prologue Seen

35 Siege on Harrogath Complete

36 Rescue on Mount Arreat Complete

37 Prison of Ice Complete

38 Betrayal of Harrogath Complete

39 Rite of Passage Complete

40 Eve of Destruction Complete

41 Respec from Akara Complete

Layer - Defines a unique numeric ID that is used to identify which Automap data
belongs to which area level when saving and loading data from the character save.
SizeX & SizeX(N) & SizeX(H) - Specifies the Length tile size values of an entire area
level, which are used for determining how to build the level, for Normal, Nightmare, and
Hell Difficulty, respectively.
SizeY & SizeY(N) & SizeY(H) - Specifies the Width tile size values of an entire area
level, which are used for determining how to build the level, for Normal, Nightmare, and
Hell Difficulty, respectively.
OffsetX & OffsetY - Specifies the location offset coordinates (measured in tile size) for
the origin point of the area level in the world.

Depend - Assigns another level to be this area level’s depended level, which controls
this area level’s position and how it starts building its tiles. Uses the level “Id” field. If this
equals 0, then ignore this.

Teleport - Controls the functionality of the Sorceress Teleport skill and the Assassin
Dragon Flight skill on the area level

Code Description

0 Teleport is disabled on the area level

1 Teleport is enabled on the area level

2 Teleport is enabled on the area level but
adheres to the collision of the rooms

Rain - Boolean Field. If equals 1, then allow rain to play its effects on the area level. If
the level is part of Act 5, then it will snow on the area level, instead of rain. If equals 0,
then it will never rain on the area level.
Mud - Boolean Field. If equals 1, then random bubbles will animate on the tiles that are
flagged as water tiles. If equals 0, then ignore this.
NoPer - Boolean Field. If equals 1, then allow the use of display option of Perspective
Mode while the player is in the level. If equals 0, then disable the option of Perspective
Mode and force the player to use Orthographic Mode while the player is in the level.
LOSDraw - Boolean field. If equals 1, then the level will check the player’s line of sight
before drawing monsters. If equals 0, then ignore this.
FloorFilter - Boolean field. If equals 1 and if the floor’s layer in the area level equals 1,
then draw the floor tiles with a linear texture sampler. If equals 0, then draw the floor
tiles with a nearest texture sampler.

BlankScreen - Boolean field. If equals 1, then draw the area level screen. If equals 0,
then do not draw the area level screen, meaning that the level will be a blank screen.
DrawEdges - Boolean field. If equals 1, then draw the areas in levels that are not
covered by floor tiles. If equals 0, then ignore this.

DrlgType - Determines the type of Dynamic Random Level Generation used for
building and handling different elements of the area level. Uses a numeric code to
handle which type of DRLG is used.

Code Description

0 None

1 Maze

2 Preset

3 Outdoor

LevelType - Defines the Level Type used for this area level. Uses the Level Type’s ID,
which is determined by what order it is defined in the LvlType.txt file.

SubType - Controls the group of tile substitutions for the area level (see LvlSub.txt).
There are defined sub types to choose from.

Code Description

-1 None

0 Border Cliffs

1 Border Middle

2 Border Corner

3 Border General

4 Border Wild Waypoint

5 Border Wild Shrine

6 Border Wild Themes

7 Border Desert Waypoint

8 Border Desert Shrine

9 Border Desert Themes

10 Siege Dirt

11 Siege Snow

12 Barricade

13 Broken Barricade

SubTheme - Controls which theme number to use in a Level Substitution (See
LvlSub.txt). The allowed values are 0 to 4, which convey which “Prob#”, “Trials#”, and
“Max#” field to use from the LvlSub.txt file. If this equals -1, then there is no sub theme
for the area level.
SubWaypoint - Controls the level substitutions for adding waypoints in the area level
(see LvlSub.txt). This uses a defined sub type to choose from (See “SubType”). This will
depend on the room having a waypoint tile.
SubShrine - Controls the level substitutions for adding shrines in the area level (see
LvlSub.txt). This uses a defined sub type to choose from (See “SubType”). This will
depend on the room allowing for a shrine to spawn.

Vis0 (to Vis7) - Defines the visibility of other area levels involved with this area level,
allowing for travel functionalities between levels. This uses the “Id” field of another
defined area level to link with this area level. If this equals 0, then no area level is
specified.
Warp0 (to Warp7) - Uses the “Id” field from LevelWarp.txt, which defines which Level
Warp to use when exiting the area level. This is connected with the definition of the
related “Vis#” field. If this equals -1, then no Level Warp is specified which should also
mean that the related “Vis#” field is not defined.

Intensity - Controls the intensity value of the area level’s ambient colors. This affects
brightness of the room’s RGB colors. Uses a value between 0 and 128. If all these
related fields equal 0, then the game ignores setting the area level’s ambient colors.
Red - Controls the red value of the area level’s ambient colors. Uses a value between 0
and 255.
Green - Controls the green value of the area level’s ambient colors. Uses a value
between 0 and 255.
Blue - Controls the blue value of the area level’s ambient colors. Uses a value between
0 and 255.

Portal - Boolean Field. If equals 1, then this area level will be flagged as a portal level,
which is saved in the player’s information and can be used for keeping track of the
player’s portal functionalities. If equals 0, then ignore this.
Position - Boolean Field. If equals 1, then enable special casing for positioning the
player on the area level. This can mean that the player could spawn on a different
location on the area level, depending on the level room’s position type. An example can
be when the player spawns in a town when loading the game, or using a waypoint, or
using a town portal. If equals 0, then ignore this.

SaveMonsters - Boolean Field. If equals 1, then the game will save the monsters in the
area level, such as when all players leave the area level. If equals 0, then monsters will
not be saved and will be removed. This is usually disabled for areas where monsters do
not spawn.

Quest - Controls what quest record is attached to monsters that spawn in this area
level. This is used for specific quests handling lists of monsters in the area level.

Code Description

0 Act 1 Prologue Seen

1 Den of Evil Complete

2 Sisters’ Burial Grounds Complete

3 Tools of the Trade Complete

4 The Search for Cain Complete

5 The Forgotten Tower Complete

6 Sisters to the Slaughter Complete

7 Act 1 Traversed

8 Act 2 Prologue Seen

9 Radament’s Lair Complete

10 The Horadric Staff Complete

11 The Tainted Sun Complete

12 The Arcane Sanctuary Complete

13 The Summoner Complete

14 The Seven Tombs Complete

15 Act 2 Traversed

16 Act 3 Prologue Seen

17 Lam Esen’s Tome Complete

18 Khalim’s Will Complete

19 Blade of the Old Religion Complete

20 The Golden Bird Complete

21 The Blackened Temple Complete

22 The Guardian Complete

23 Act 3 Traversed

24 Act 4 Prologue Seen

25 The Fallen Angel Complete

26 Terror’s End Complete

27 The Hellforge Complete

28 Act 4 Traversed

29 Rogue Warning Complete

30 Guard in Town Warning Complete

31 Guard in Desert Warning Complete

32 Dark Wanderer Seen

33 Angel Warning Complete

34 Act 5 Prologue Seen

35 Siege on Harrogath Complete

36 Rescue on Mount Arreat Complete

37 Prison of Ice Complete

38 Betrayal of Harrogath Complete

39 Rite of Passage Complete

40 Eve of Destruction Complete

41 Respec from Akara Complete

WarpDist - Defines the minimum pixel distance from a Level Warp that a monster is
allowed to spawn near. Tile distance values are converted to game pixel distance
values by multiplying the tile distance value by 160 / 32, where 160 is the width of pixels
of a tile.

MonLvl & MonLvl(N) & MonLvl(H) - Controls the overall monster level for the area
level for Normal, Nightmare, and Hell Difficulty, respectively. This is for Classic mode
only. This can affect the highest item level allowed to drop in this area level.

MonLvlEx & MonLvlEx(N) & MonLvlEx(H) - Controls the overall monster level for the
area level for Normal, Nightmare, and Hell Difficulty, respectively. This is for Expansion
mode only. This can affect the highest item level allowed to drop in this area level.
MonDen & MonDen(N) & MonDen(H) - Controls the monster density on the area level
for Normal, Nightmare, and Hell Difficulty, respectively. This is a random value out of
100000, which will determine whether to spawn or not spawn a monster pack in the
room of the area level. If this value equals 0, then no random monsters will populate on
the area level.
MonUMin & MonUMin(N) & MonUMin(H) - Defines the minimum number of Unique
Monsters that can spawn in the area level for Normal, Nightmare, and Hell Difficulty,
respectively. This field depends on the related “MonDen” field being defined.
MonUMax & MonUMax(N) & MonUMax(H) - Defines the maximum number of Unique
Monsters that can spawn in the area level for Normal, Nightmare, and Hell Difficulty,
respectively. This field depends on the related “MonDen” field being defined. Each room
in the area level will attempt to spawn a Unique Monster with a 5/100 random chance,
and this field’s value will cap the number of successful attempts for the entire area level.
MonWndr - Boolean Field. If equals 1, then allow Wandering Monsters to spawn on this
area level (see wanderingmon.txt). This field depends on the related “MonDen” field
being defined. If equals 0, then ignore this.
MonSpcWalk - Defines a distance value, used to handle monster pathing AI when the
level has certain pathing blockers, such as jail bars or rivers. In these cases, monsters
will walk randomly until a player is located within this distance value or when the
monsters find a possible path to target the player. If this equals 0, then ignore this field.

NumMon - Controls the number of different monsters randomly spawn in the area level.
The maximum value is 13. This controls the number of random selections from the 25
related “mon#” and “umon#” fields or “nmmon#” fields, depending on the game difficulty.
mon1 (to mon25) - Defines which monsters can spawn on the area level for Normal
Difficulty. Uses the monster “Id” field from the monstats.txt file.
rangedspawn - Boolean Field. If equals 1, then for the first monster, try to pick a
ranged type. If equals 0, then ignore this.
nmon1 (to nmon25) - Defines which monsters can spawn on the area level for
Nightmare Difficulty and Hell Difficulty. Uses the monster “Id” field from the monstats.txt
file.
umon1 (to umon25) - Defines which monsters can spawn as Unique monsters on this
area level for Normal Difficulty. Uses the monster “Id” field from the monstats.txt file.

cmon1 (to cmon4) - Defines which Critter monsters can spawn on the area level. Uses
the monster “Id” field from the monstats.txt file. Critter monsters are determined by the
“critter” field from the monstats2.txt file.
cpct1 (to cpct4) - Controls the percent chance (out of 100) to spawn a Critter monster
on the area level.
camt1 (to camt4) - Controls the amount of Critter monsters to spawn on the area level
after they succeeded their random spawn chance from the related “cpct#” field.

Themes - Controls the type of theme when building a level room. This value is a
summation of possible values to build a bit mask for determining which themes to use
when building a level room. For example, a value of 60 means that the area level can
have the following themes: 32, 16, 8, 4.

Code Description

0 No Theme

1 Object Empty Theme (no objects spawn)

2 Barrel Theme (create random barrel objects)

4 Shrine Theme

8 Treasure Theme (create random items)

16 Armor Stand Theme

32 Weapon Rack Theme

SoundEnv - Uses the “Index” field from SoundEnviron.txt, which controls what music is
played while the player is in the area level

Waypoint - Defines the unique numeric ID for the Waypoint in the area level. If this
value is greater than or equal to 255, then ignore this field.

LevelName - String Field. Used for displaying the name of the area level, such as when
in the UI when the Automap is being viewed.
LevelWarp - String Field. Used displaying the entrance name of the area level on Level
Warp tiles that link to this area level. For example, when the player mouse hovers over
a tile to warp to the area level, then this string is displayed.
LevelEntry - String Field. Used for displaying the UI popup title string when the player
enters the area level.

ObjGrp0 (to ObjGrp7) - Uses a numeric ID to define which possible Object Groups to
spawn in this area level (See objgroup.txt). The game will go through each of these
fields, so there can be more than 1 Object Group used in an area level. If this value
equals 0, then ignore this.
ObjPrb0 (to ObjPrb7) - Determines the random chance (out of 100) for each Object
Group to spawn in the area level. This field depends on the related “ObjGrp#” field
being defined.

LvlMaze.txt

Overview

This file controls the sizes of the underground area levels. This file uses the levels from
Levels.txt and specifies the sizes for each room, which can mean how many Level
Presets to use to build out the entire randomly generated area.

Data Fields

Name - This is a reference field to describe the area level. Ideally this should match the
name of the area level from the Levels.txt file.
Level - This refers to the “Id” field from the Levels.txt file

Rooms & Rooms(N) & Rooms(H) - Controls the total number of rooms that a Level
Maze will generate when playing the game in Normal Difficulty, Nightmare Difficulty, and
Hell Difficulty, respectively.

SizeX & SizeY - Controls the length and width sizes of each room (ds1 map files) that is
added to the Level Maze. This is measured in tile sizes.

Merge - This value affects the probability that a room gets an adjacent room linked next
to it. This is a random chance out of 1000.

LvlPrest.txt

Overview

This file controls the values for each Level Preset. A Level Preset is a static area
composed of tiles that is used to construct entire area levels found in the game.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Name - This is a reference field to define the Level Preset
Def - Defines the unique numeric ID for the Level Preset. This is referenced in other
files.
LevelId - This refers to the “Id” field from the Levels.txt file. If this value is not equal to 0,
then this Level Preset is used to build that entire area level. If this value is equal to 0,
then the Level Preset does not define the entire area level and is used as a part of
constructing area levels.

Populate - Boolean Field. If equals 1, then units are allowed to spawn in the Level
Preset. If equals 0, then units will never spawn in the Level Preset.
Logicals - Boolean Field. If equals 1, then the Level Preset allow for wall transparency
to function. If equals 0, then walls will always appear solid.
Outdoors - Boolean Field. If equals 1, then the Level Preset will be classified as an
outdoor area, which can mean that lighting will function differently. If equals 0, then the
Level Preset will be classified as an indoor area.

Animate - Boolean Field. If equals 1, then the game will animate the tiles in the Level
Preset. If equals 0, then ignore this.
KillEdge - Boolean Field. If equals 1, then the game will remove tiles that border the
size of the Level Preset. If equals 0, then ignore this.
FillBlanks - Boolean Field. If equals 1, then all blank tiles in the Level Preset will be
filled with unwalkable tiles. If equals 0, then ignore this.

SizeX & SizeY - Specifies the Length and Width tile size values of the Level Preset,
which are used for determining how big to build area levels. These values are equal to 0
for Level Presets that are static.

AutoMap - Boolean Field. If equals 1, then this Level Preset will be automatically
completely revealed on the Automap. If equals 0, then this Level Preset will be hidden
on the Automap and will need to be explored.
Scan - Boolean Field. If equals 1, then this Level Preset will allow the usage of warping
with waypoints (This requires that the Level Preset has a waypoint object). If equals 0,
then ignore this.

Pops - Defines how many Pop tiles are defined in the Level Preset file. These Pop tiles
are mainly used for controlling the roof and wall popping when a player enters a building
in an area.
PopPad - Determines the size of the Pop tile area, by using an offset value. This offset
value can increase or decrease the size of the Pop tile size if it has a positive or
negative value.

Files - Determines the number of different versions to use for the Level Preset. This
value acts as a range, which the game will use for randomly choosing one of the “File#”
fields to build the Level Preset. This is how the Level Presets have variety when the
area level is being built.
File1 (to File6) - Specifies the name of which ds1 file to use. The ds1 files contain data
for building Level Presets. If this value equals 0, then this field will be ignored. The
number of these defined fields should match the value used in the “Files” field.
Dt1Mask - This functions as a bit field mask with a size of a 32 bit value. This explains
to the ds1 file which of the 32 dt1 tile files to use from a Level Type when assembling
the Level Preset. Each “File#” field from LevelType.txt is assigned a bit value, up to the
32 possible bit values. (For example: File1 = 1, File2=2, File3 = 4, File4=8,
File5=16….File32 = 2147483648). To build the “Dt1Mask”, you would select which
“File#” fields to use from LevelTypes.txt and add their associated bit values together for
a total value. This total value is the bitmask value.

LvlSub.txt

Overview

This file controls how tiles can be substituted in for other tiles. The game will divide the
level into clusters and iterate through these clusters to randomly substitute tiles with
different ones for more visual diversity.

Data Fields

Name - This is a reference field to describe the Level Substitution
Type - This refers to the “SubType” field from the Levels.txt file. This defines a group
that multiple substitutions can share.
File - Specifies the name of which ds1 file to use. The ds1 files contain data for building
Level Presets.

CheckAll - Boolean Field. If equals 1, then substitute each tile in the room. If equals 0,
then substitute random tiles in the room.

BordType - This controls how often substituting tiles can work for border tiles

Code Description

0 Single One Only. This allows substituting
for 1 border in total

1 One Per Cluster. This allows substituting
1 border for each cluster in the level

Other
values

Allow substituting borders for all of the
level

GridSize - Controls the tile size of a cluster for substituting tiles. This evenly affects
both the X and Y size values of a room.
Dt1Mask - This functions as a bit field mask with a size of a 32 bit value. This explains
to the ds1 file which of the 32 dt1 tile files to use from a Level Type when assembling
selecting a tile for substitution. Each “File#” field from LevelType.txt is assigned a bit
value, up to the 32 possible bit values. (For example: File1 = 1, File2=2, File3 = 4,
File4=8, File5=16….File32 = 2147483648). To build the “Dt1Mask”, you would select
which “File#” fields to use from LevelTypes.txt and add their associated bit values
together for a total value. This total value is the bitmask value.

Prob0 (to Prob4) - This value affects the probability that the tile substitution is used.
This is a random chance out of 100. Which “Prob#” field that is checked depends on the
“SubTheme” value from the Levels.txt file.
Trials0 (to Trials4) - Controls the number of times to randomly substitute tiles in a
cluster. If this value equals -1, then the game will try to do as many tile substitutions that
can be allowed based on the cluster and tile size. This field depends on the “CheckAll”
field being equals to 0.
Max0 (to Max4) - The maximum number of clusters of tiles to substitute randomly. This
field depends on the “CheckAll” field being equals to 0.

LvlTypes.txt

Overview

This file controls which files containing tile graphics are used for creating maps. This
looks at dt1 files, which contain tile images of the environments foundin the game. Each
line in this file defines a Level Type and what files it uses.

The order of each Level Type defined in this file will convey what ID value it has, which
is referenced by the following files: Levels.txt, LvlPrest.txt
The order of these Level Types should not be changed

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Name - This is a reference field to define the Level Type

File 1 (to File 32) - Specifies the name of which dt1 file to use. The dt1 files contain the
images for each area tile found in each Act. If this value equals 0, then this field will be
ignored.

Act - Defines which Act is related to the Level Type. When loading an Act, the game will
only use the Level Types associated with that Act number. Uses a decimal number to
convey each Act number (Ex: A value of 3 means Act 3)

LvlWarp.txt

Overview

This file controls how the player is moved to different area levels, such as entrances
and exits between different areas. This player transportation of between levels is
defined as a Level Warp. Level Warps function as special tiles that are added to the
area for controlling the location for where to transport the player.

This file is used by the Levels.txt file.

Data Fields

Name - This is a reference field to define the Level Warp
Id - Defines the numeric ID for the type of Level Warp. This ID can be shared between
multiple Level Warps if those Level Warps want to use the same functionality. This is
referenced in other files.

SelectX & SelectY - These values define the horizontal and vertical offsets
(respectively) of the starting left corner position of the Level Warp area. This is treated
as the starting position to select the interactable Level Warp area in the area level. This
value is measured in pixels.
SelectDX & SelectDY - These values define the horizontal and vertical offsets
(respectively) of the offset from the starting position of the Level Warp area. This is
added with the “SelectX” & “SelectY” fields (respectively) to determine the overall size
and position of the Level Warp in the area level. This value is measured in pixels.

ExitWalkX & ExitWalkY - These values define the horizontal and vertical positions
(respectively) of the destination location where the player will walk to after exiting to this
Level Warp. This value is measured with a sub-tile offset from the base position of the
Level Warp. One full tile on a level is composed of a grid of 5x5 sub-tiles.

OffsetX & OffsetY - These values define the horizontal and vertical positions
(respectively) of the sub-tile for the Level Warp, where the player will appear when
exiting to this area level. This value is measured with a sub-tile offset from the base
position of the Level Warp. One full tile on a level is composed of a grid of 5x5 sub-tiles.

LitVersion - Boolean Field. If equals 1, then Level Warp tiles will change their
appearance when highlighted. If equals 0, then the Level Warp tiles will not change
appearance when highlighted.
Tiles - Defines an index offset to determine which tile to use in the tile set for the
highlighted version of the Level Warp. These tiles are loaded and hidden/revealed when
the player mouse hovers over the Level Warp tiles. This relies on “LitVersion” being
enabled.
NoInteract - Boolean Field. If equals 1, then the Level War cannot be directly interacted
by the player. If equals 0, then the player can interact with the Level Warp.

Direction - Defines the orientation of the Level Warp. Uses a specific string code.

Code Description

l Left. If this is selected, then the tile type
direction should match this.

r Right. If this is selected, then the tile type
direction should match this.

b Both. This can mean that the Level Warp
can be reassigned its direction.

UniqueId - Defines the unique numeric ID for the Level Warp. Each Level Warp should
have a unique ID so that the game can handle loading that specific Level Warp’s related
files.

MagicPrefix.txt

Overview

This file controls what item affixes (groups of item modifiers) are applied as the prefix for
an item
These item affixes will appear at the start of an item’s name

This file is loaded together with other similar files in the following order: magicsuffix.txt,
magicprefix.txt, automagic.txt
These combined files form the Item Mods structure.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Name - Defines the item affix name
version - Defines which game version to use this item affix (<100 = Classic mode | 100
= Expansion mode)

spawnable - Boolean Field. If equals 1, then this item affix is used as part of the game’s
randomizer for assigning item modifiers when an item spawns. If equals 0, then this
item affix is never used.
rare - Boolean Field. If equals 1, then this item affix can be used when randomly
assigning item modifiers when a rare item spawns. If equals 0, then this item affix is not
used for rare items.

level - The minimum item level required for this item affix to spawn on the item. If the
item level is below this value, then the item affix will not spawn on the item.
maxlevel - The maximum item level required for this item affix to spawn on the item. If
the item level is above this value, then the item affix will not spawn on the item.
levelreq - The minimum character level required to equip an item that has this item affix

classspecific - Controls if this item affix should only be used for class specific items.
This relies on the class specified in the “Class” field from ItemTypes.txt, for the specific
item.

Code Description

(empty) Any Class

ama Amazon only

bar Barbarian only

pal Paladin only

nec Necromancer only

sor Sorceress only

dru Druid only

ass Assassin only

class - Controls which character class is required for the class specific level
requirement “classlevelreq” field

Code Description

(empty) None

ama Amazon

bar Barbarian

pal Paladin

nec Necromancer

sor Sorceress

dru Druid

ass Assassin

classlevelreq - The minimum character level required for a specific class in order to
equip an item that has this item affix. This relies on the class specified in the “class”
field. If equals null, then the class will default to using the “levelreq” field.

frequency - Controls the probability that the affix appears on the item (a higher value
means that the item affix will appear on the item more often). This value gets summed
together with other “frequency” values from all possible item affixes that can spawn on
the item, and then is used as a denominator value for the randomizer. Whichever item
affix is randomly selected will be the one to appear on the item. The formula is
calculated as the following: [Item Affix Selected] = [“frequency”] / [Total Frequency]. If
the item has a magic level (from the “magic lvl” field in weapons.txt/armor.txt/misc.txt)
then the magic level value is multiplied with this value. If equals 0, then this item affix
will never appear on an item.
group - Assigns an item affix to a specific group number. Items cannot spawn with
more than 1 item affix with the same group number. This is used to guarantee that
certain item affixes do not overlap on the same item. If this field is null, then the group
number will default to group 0.

mod1code (to mod3code) - Controls the item properties for the item affix (Uses the
“code” field from Properties.txt)
mod1param (to mod3param) - The “parameter” value associated with the listed
property (mod). Usage depends on the property function (See the “func” field on
Properties.txt)
mod1min (to mod3min) - The “min” value to assign to the listed property (mod). Usage
depends on the property function (See the “func” field on Properties.txt)
mod1max (to mod3 max) - The “max” value to assign to the listed property (mod).
Usage depends on the property function (See the “func” field on Properties.txt)

transformcolor - Controls the color change of the item after spawning with this item
affix. If empty, then the item affix will not change the item’s color. (Uses Color Codes
from the reference file colors.txt)

Code Color

 No color change

whit White

lgry Light Grey

dgry Dark Grey

blac Black

lblu Light Blue

dblu Dark Blue

cblu Crystal Blue

lred Light Red

dred Dark Red

cred Crystal Red

lgrn Light Green

dgrn Dark Green

cgrn Crystal Green

lyel Light Yellow

dyel Dark Yellow

lgld Light Gold

dgld Dark Gold

lpur Light Purple

dpur Dark Purple

oran Orange

bwht Bright White

itype1 (to itype7) - Controls what Item Types are allowed to spawn with this item affix.
Uses the “code” field from ItemTypes.txt

etype1 (to etype5) - Controls what Item Types are excluded to spawn with this item
affix. Uses the “code” field from ItemTypes.txt

multiply - Multiplicative modifier for the item’s buy and sell costs, based on the item
affix (Calculated in 1024ths for buy cost and 4096ths for sell cost)
add - Flat integer modification to the item’s buy and sell costs, based on the item affix

MagicSuffix.txt

Overview

This file controls what item affixes (groups of item modifiers) are applied as the suffix for
an item
These item affixes will appear at the end of the item’s name

This file is loaded together with other similar files in the following order: magicsuffix.txt,
magicprefix.txt, automagic.txt
These combined files form the Item Mods structure.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Name - Defines the item affix name
version - Defines which game version to use this item affix (<100 = Classic mode | 100
= Expansion mode)

spawnable - Boolean Field. If equals 1, then this item affix is used as part of the game’s
randomizer for assigning item modifiers when an item spawns. If equals 0, then this
item affix is never used.
rare - Boolean Field. If equals 1, then this item affix can be used when randomly
assigning item modifiers when a rare item spawns. If equals 0, then this item affix is not
used for rare items.

level - The minimum item level required for this item affix to spawn on the item. If the
item level is below this value, then the item affix will not spawn on the item.
maxlevel - The maximum item level required for this item affix to spawn on the item. If
the item level is above this value, then the item affix will not spawn on the item.
levelreq - The minimum character level required to equip an item that has this item affix

classspecific - Controls if this item affix should only be used for class specific items.
This relies on the class specified in the “Class” field from ItemTypes.txt, for the specific
item.

Code Description

(empty) Any Class

ama Amazon only

bar Barbarian only

pal Paladin only

nec Necromancer only

sor Sorceress only

dru Druid only

ass Assassin only

class - Controls which character class is required for the class specific level
requirement “classlevelreq” field

Code Description

(empty) None

ama Amazon

bar Barbarian

pal Paladin

nec Necromancer

sor Sorceress

dru Druid

ass Assassin

classlevelreq - The minimum character level required for a specific class in order to
equip an item that has this item affix. This relies on the class specified in the “class”
field. If equals null, then the class will default to using the “levelreq” field.

frequency - Controls the probability that the affix appears on the item (a higher value
means that the item affix will appear on the item more often). This value gets summed
together with other “frequency” values from all possible item affixes that can spawn on
the item, and then is used as a denominator value for the randomizer. Whichever item
affix is randomly selected will be the one to appear on the item. The formula is
calculated as the following: [Item Affix Selected] = [“frequency”] / [Total Frequency]. If
the item has a magic level (from the “magic lvl” field in weapons.txt/armor.txt/misc.txt)
then the magic level value is multiplied with this value. If equals 0, then this item affix
will never appear on an item.
group - Assigns an item affix to a specific group number. Items cannot spawn with
more than 1 item affix with the same group number. This is used to guarantee that
certain item affixes do not overlap on the same item. If this field is null, then the group
number will default to group 0.

mod1code (to mod3code) - Controls the item properties for the item affix. (Uses the
“code” field from Properties.txt)
mod1param (to mod3param) - The “parameter” value associated with the listed
property (mod). Usage depends on the property function (See the “func” field on
Properties.txt)
mod1min (to mod3min) - The “min” value to assign to the listed property (mod). Usage
depends on the property function (See the “func” field on Properties.txt)
mod1max (to mod3 max) - The “max” value to assign to the listed property (mod).
Usage depends on the property function (See the “func” field on Properties.txt)

transformcolor - Controls the color change of the item after spawning with this item
affix. If empty, then the item affix will not change the item’s color. (Uses Color Codes
from the reference file colors.txt)

Code Color

 No color change

whit White

lgry Light Grey

dgry Dark Grey

blac Black

lblu Light Blue

dblu Dark Blue

cblu Crystal Blue

lred Light Red

dred Dark Red

cred Crystal Red

lgrn Light Green

dgrn Dark Green

cgrn Crystal Green

lyel Light Yellow

dyel Dark Yellow

lgld Light Gold

dgld Dark Gold

lpur Light Purple

dpur Dark Purple

oran Orange

bwht Bright White

itype1 (to itype7) - Controls what Item Types are allowed to spawn with this item affix.
Uses the “code” field from ItemTypes.txt

etype1 (to etype5) - Controls what Item Types are excluded to spawn with this item
affix. Uses the “code” field from ItemTypes.txt

multiply - Multiplicative modifier for the item’s buy and sell costs, based on the item
affix (Calculated in 1024ths for buy cost and 4096ths for sell cost)
add - Flat integer modification to the item’s buy and sell costs, based on the item affix

Missiles.txt

Overview

This file controls the different functions for all missiles and their statistics. Missiles are
projectiles used throughout the game for attacks, skills, and special effects.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Missile - Defines the unique name ID for the missile, which is how other files can
reference the missile. The order of defined missiles will determine their ID numbers, so
they should not be reordered.

pCltDoFunc - Uses an ID value to select a function for the missile’s behavior while
active every frame on the client side. This is more about handling the local graphics
while the missile is moving.

Code Parameters Description

0
(or
empty)

 Do nothing

1 ProcessMissileMode - Perform the standard client
missile move function. This is called in most of the other
functions

2 ProcessBlood - Kill the missile if it goes off screen.
Otherwise, set the number of duration frames for the
missile to equal 128 and perform the standard missile
move function.

3 CltCalc1
CltSubMissile1

PoisonJavelin - Create a sub missile each frame that the
current missile is moving where “CltCalc1” controls the
number of subloops for the created sub missile.

4 CltParam1
CltParam2
CltParam3
CltSubMissile1

PoisonCloud - Create multiple sub missiles randomly in
a area where the parameters control the spawn rate,
number of sub missiles to spawn per rate, and the
spawn radius size, respectively.

5 SubStart
SubStop

Firewall - Create an animation sequence for the missile
where the difference of the “SubStart” and “SubStop”
fields control the length of the sequence within the
animation, and the game will randomly choose a frame
within this sequence to loop back to.

6 CltParam1
CltSubMissile1
CltSubMissile2
CltSubMissile3

FirewallMaker - Randomly create 1 of the 3 possible sub
missiles, where the parameter controls the random
chance that the sub missile spawns with no light.

7 CltParam1 ProcessGuidedArrow - Try to retarget the missile on a
possible target unit where the parameter controls the
rate at which the missile should attempt to retarget
again.

8 CltParam1
CltSubMissile1
InitSteps

LightningMaker - Attempt to create a sub missile where
the parameter controls the number of subloops for the
sub missile (minimum value equals 1). The sub missile is
only created if the current missile’s has existed for
greater than or equal to the “InitSteps” value.

9 CltParam1
CltParam2
CltParam3
CltSubMissile1
CltSubMissile2

ProcessMeteorCenter - Create each sub missile where
the parameters control the number of frames, the missile
fall rate (Used to calculate the starting height), and the
missile slide rate (used to calculated the starting position
offset), respectively. Also attempt to play the

ProgSound “ProgSound” sound at 2 frames before the “CltParam1”
frame count.

10 CltParam1
CltParam2
CltParam3
CltSubMissile1
CltSubMissile2

ProcessMonBliz - Randomly create 1 of the 2 sub
missiles in an area radius, where the parameters control
the baseline radius size (affected by the missile level),
the spawn frequency (minimum equals 3 frames,
affected by the missile level), and the level divisor
(affects the difference in value for the other fields per
missile level). The “CltParam1” and “CltParam2”
parameters also can control the missile fall distance and
fall rate.

11 ProcessHoldLast - At the end of the missile’s animation,
set it to dead and destroy its light. Otherwise, run the
ProcessMissileMode function.

12 CltParam1
CltParam2

ProcessScreenShake - Run the ProcessMissileMode
function and also call the camera shaking function. The
“CltParam1” field controls the camera shake magnitude,
and the “CltParam2” field controls the camera shake
duration.

13 CltParam1
CltParam2
CltSubMissile1
CltSubMissile2

ProcessBlizzard - Randomly create 1 of the 2 missiles in
a calculated area every duration. The radius and spawn
frequency are controlled by the missile’s linked skill’s
“calc1” and “calc2” fields. The “CltParam1” and
“CltParam2” parameters control the sub missile fall
distance and fall rate.

14 CltParam3
CltParam4
CltParam5

FingerMageSpider2 - Shoot a missile that can be
retargeted on a unit. The parameters control the retarget
frequency, the retarget distance range, and the retarget
position offset (minimum value equals 1), respectively.

15 CltParam1
CltParam2
CltParam3
CltParam4
CltParam5
CltSubMissile1

FingerMageSpider - Shoot a missile that can be
retargeted on a unit and can spawn a sub missile. The
parameters control the number of frames to wait before
spawning the sub missile (minimum value equals 1), the
number of frames to wait before processing the missile,
the retarget frequency, the retarget distance range, and
the retarget position offset (minimum value equals 1),
respectively.

16 CltSubMissile1 DiabWallMaker - Shoot a missile using the
ProcessMissileMode function where every frame while
moving it can create a sub missile that will have a
random chance to spawn with no light

17 CltParam1
CltSubMissile1

ProcessCurse - Shoot a missile that will create a disc of
sub missiles every 3 frames after a specified frame
duration controlled by the parameter. The radius and
density of the disc of sub missile is controlled by the

current missile’s radius value, which is given to the
missile by the skill function.

18 CltParam1
CltSubMissile1
InitSteps

SimpleTrailMaker - Shoot a missile that will create a sub
missile after the “InitSteps” frame count, where the
parameter controls the sub missile’s subloops. The sub
missile will follow the same direction, offset, and path of
the current missile.

19 CltParam1
CltParam2
CltSubMissile1

ProcessFrozenOrb - Shoot a missile that will create sub
missiles at a spawn rate and different directions. The
“CltParam1” value controls the rate to spawn sub
missiles, and the “CltParam2” value controls the
direction index increment for looping through which
direction the next created sub missile should fire
towards.

20 CltParam1
CltParam2

ProcessFrozenOrbNova - Shoot a missile that will have
a delay until processing and then will process its path at
a specified rate. The “CltParam1” value controls the
activation frame, and the “CltParam2” value controls the
periodic rate to process the missile path

21 CltParam1
CltSubMissile1

BRDeathControl - Create a sub missile after a periodic
delay that can spawn in a random location in a radius
controlled by the parameter. The periodic delay can be
25, 10, 3, or 15 frames, depending how many frames the
current missile has lasted.

22 CltParam1
CltSubMissile1

BRDeathLightning - Shoot a missile that will retarget to a
randomized direction every periodic frame delay and will
create sub missiles while moving.

23 ProcessDOELight - Run the ProcessMissileMode
function and ensure that the missile lasts 500 frames if
its frame count is less than 100

24 CltParam1
CltParam2
CltParam3
CltSubMissile1
CltSubMissile2

ProcessCairnStones - Create multiple “CltSubMissile1”
sub missiles in a radius controlled by “CltParam2” and a
spawn frequency controlled by “CltParam3”, lasting a
duration controlled by “CltParam1”. The “CltParam1”
field also controls the start time for spawning more
“CltSubMissile1” sub missiles and “CltSubMissile2” sub
missiles every 8 frames if there are any of the
“StoneAlpha” to “StoneTheta” objects in the room.

25 CltParam1
CltParam2
CltParam3
CltSubMissile1

ProcessTowerMist - Shoot a missile that will spawn a
sub missile randomly in a defined radius after a periodic
delay

26 CltParam1
CltParam2
CltParam3
CltSubMissile1

SmithDeathControl - Create “CltSubMissile1” sub missile
in a random position in a radius controlled by
“CltParam3” where “CltParam1” controls its spawn rate.
Create “CltSubMissile2” sub missile as a lobbing missile

CltSubMissile2 in a random position in the same radius where
“CltParam2” controls its spawn rate. Also the
“CltSubMissile2” sub missile’s level is controlled by the
following function: 1 + RANDOM(0, 5)

27 CltParam1
CltSubMissile1

SmithFirewallMaker - Create the sub missile every frame
while moving. The parameter controls the delay until the
current missile needs to retarget in a new direction

28 CltParam1
CltSubMissile1

SmithDoNotDraw - Create 4 sub missiles in different
directions after a delay that is controlled by the
parameter.

29 CltParam1
CltParam2
CltSubMissile1
CltSubMissile2
CltSubMissile3
ProgSound

ProcessAndyControl0 - Create “CltSubMissile1” after 10
Frames which subsequently will make its own
“CltSubMissile1” where its “CltParam1”, “CltParam2” and
“CltParam3” fields control the Z offset, Z Velocity Max,
and Z Acceleration, respectively. Create
“CltSubMissile2” randomly in a radius equal to 20 and at
a periodic rate controlled by “CltParam1”. “CltParam2”
controls the duration of the camera shake, which starts
after 90 frames. Between frame 115 and 315, create
“CltSubMissile3” randomly in a radius equal to 6 where
its “CltParam1” and “CltParam2” values control the Z
offset and Z velocity.

30 CltParam1
CltParam2
CltParam3
CltSubMissile1

ProcessTowerChestSpawner - Start creating the sub
missile periodically after an initial delay controlled by
“CltParam1”. “CltParam2” controls the periodic rate to
spawn the sub missile and “CltParam3” controls the
radius size to spawn the sub missile randomly in an
area.

31 ProcessHoradricStaff - This function does multiple
hardcoded features. Shake the screen after 150 frames.
Create 7 “horadriclight” missiles. After 165 frames,
create the “horadriclightning” missile at a specific
position, direction, and velocity. After 150 frames, create
the “dust” missile every other frame.

32 ProcessRadDeath - Create a “radamenthandofgod”
missile at an increasing rate based on the total frame
count of the current missile

33 ProcessTaintedSun - Create a “taintedsunflash” missile
at an increasing rate and at random ranges, based on
the total frame count of the current missile. Also add a
“horadric_light” overlay on the altar object in the level
room.

34 ProcessTaintedSunBall - The missile will change its path
and velocities throughout its life cycle using different
mods, to follow a crafted pattern

35 ProcessQueenDeath - Every 4 frames, create a
“queendeathglob” using a lobbing function in a random
position in a defined radius of size 12.

36 ProcessDurielDeath - Create a “explodingarrowexp”
missile at an increasing rate and at random ranges,
based on the total frame count of the current missile.
Also create a “durieldeathrock” missile at an increasing
rate and at random ranges, based on the total frame
count of the current missile. Run a camera shake
function.

37 ProcessDiabloAppears - Run a camera shake function
and request to play the “monster_diablo_taunt_1” sound

38 ProcessHellForge - Create multiple lobbing
“hffragment1” missiles at an increasing rate in random
directions, based on the total frame count of the current
missile. Run a camera shake function.

39 ProcessHFragment1 - If the missile has a source unit,
then set the missile frame to 0 and run the
ProcessMissileMode function

40 ProcessHFragment2 - Periodically create a “hfspirit1”
missile after a randomized periodic delay.

41 ProcessSoul - Adjust the animation rate of the missile
after certain key frames during the missile’s duration.

42 Param1
Param2

ProcessIzualDeath - Create the “izual mist loop” missile
every frame in a random radius of size 10. Create a
“izual lightning” missile every frame between the value of
the “Param1” and “Param2” fields.

43 ProcessAttached - Attach the missile follow its source
unit’s position. Kill the missile if the unit is dead.

44 CltSubMissile1 ProcessDistraction - Attach the missile follow its source
unit’s position. Create a sub missile while moving.

45 CltParam1
CltParam2
CltParam3
CltSubMissile1

ProcessDistractionFog - Create a number of sub
missiles in an area at a defined rate. “CltParam1”
controls the spawn rate, “CltParam2” controls the
number of missiles to spawn per rate, and “CltParam3”
controls the radius to randomly spawn the sub missiles.

46 CltParam1
CltSubMissile1

ProcessTrailJav - Create 2 sub missiles per frame while
moving with perpendicular directions and a defined
number of subloops controlled by the parameter

47 CltParam1
CltSubMissile1
CltSubMissile2
CltSubMissile3
ProgSound

ProcessMoltenBoulder - Play the “ProgSound” sound if
the missile has a bounce value. Run the FirewallMaker
function (Code = 6).

48 CltSubMissile1
CltSubMissile2

ProcessEruption - Uses the linked skill’s “calc1” and
“calc2” fields to get the spawn radius and spawn
frequency for creating the 2 sub missiles. For
“CltSubMissile1”, the missile is automatically set to dead
mode when it is created.

49 CltParam1
CltSubMissile1

ProcessVines - Periodically spawn the sub missile in the
same direction as the current missile where the
parameter controls the spawn rate

50 CltParam1
CltParam2
CltParam3
CltParam4
CltParam5
CltSubMissile1

ProcessVolcano - Spawn a sub missile with the lob
function at a defined spawn rate at certain frames within
the current missile’s duration. “CltParam1” controls the
periodic spawn rate, “CltParam2” controls the radius to
spawn the sub missile, “CltParam3” controls the starting
frame to begin spawning the sub missile, “CltParam4”
controls the end frame to stop spawning the sub missile,
and “CltParam5” controls the lob start value.

51 CltParam1
CltParam2
CltParam3
CltParam4
CltSubMissile1
CltSubMissile2
ProgSound

ProcessRecycleDelay - Create “CltSubMissile1” at a
frame controlled by “CltParam1” in a radius controlled by
“CltParam4” and a spawn count controlled by
“CltParam3”. Create “CltSubMissile2” sub missile at a
frame controlled by “CltParam2” and also request to play
the “ProgSound” at the same time.

52 CltSubMissile1 ProcessMakePerpMissiles - Create 2 of the same sub
missile every frame while moving that face at
perpendicular directions

53 CltParam1
CltSubMissile1

ProcessTigerFury - Create a sub missile every frame
while moving and then run the ProcessGuidedArrow
function (Code = 7).

54 ProcessAnyaCenter - Create a “anya icemagic” missile
every frame until frame 110. Create a decreasing
number of “anyasteam1” missiles in a random position
and velocity, every frame until frame 110. Perform a
camera shake function. Create a “anyasteamvent”
missile and a “anyasteam” missile randomly in a radius
every 7 frames until frame 200.

55 ProcessAncientDeath - Create a “ancient death cloud”
missile every 3 frames randomly in an area in a random
direction

56 CltParam1
CltParam2
CltParam3
CltSubMissile1
CltSubMissile2
CltSubMissile3

ProcessBaalTaunt - Randomly choose to spawn one of
the 3 sub missiles where each of the parameters control
the spawn rate for each of the sub missiles.

57 CltSubMissile1 ProcessBladeShieldCenter - Attach the current missile to
the source unit and after a certain delay, create a sub
missile every frame that moves in a missile spiral path

58 Param1 ProcessChaosIce - Randomly decide to change the path
of the missile to a different direction

59 ProcessWorldstoneChip - If the current Z offset is too
low or too high, then stop the missile

60 ProcessHurricane - Every 2 Frames change the missile
path to a different direction

61 ProcessOverseerCtrl - Randomly create either the
“catapult cold ball” missile or “catapult meteor ball”
missile at an increasing spawn rate in a random position
in a radius.

62 ProcessNihlathak - This function handles the missile
visuals for Nihlathak’s death.

• Every frame has a random chance to create 2 of
the following missiles in a random position:
“nehlithakswoosh” “nehlithakdebris1”,
“nehlithakdebris2”, “nehlithakdebris3”,
nehlithakdebris4”.

• After frame 60, every 20 frames create a
“brdeathlightningbolt” missile in a random
direction.

• At frame 25, create a “nehlithakhole” and
“nehlithakholelight” at the missile’s location.

63 ProcessNihlathakHurr - Update the path of the missile at
every frame

64 ProcessBaalControl - This function handles the missile
visuals for Baal’s death.

• Randomly spawn either a “baalfx spirit 1” missile
or “baalfx spirit 2” missile at an increasing rate
and in a random direction.

• At frame 450, create a “baalfx baal head appear”
missile

• At frame 425, create a “baalfx baal head 1”
missile

• At frame 375, create a “baalfx baal head 2”
missile

• At frame 325, create a “baalfx baal head 3”
missile

• After some time and when the “tyrael3” unit is
found within the level, then randomly create either
the “baalfx tyreal debris 1”, “baalfx tyreal debris
2”, or “baalfx tyreal debris 3” every frame for a
specified duration

pCltHitFunc - Uses an ID value to select a specialized function for the missile’s
behavior when hitting something on the client side. This is more about handling the local
graphics at the moment of missile collision.

Code Parameters Description

0
(or
empty)

 Do nothing

1 cHitPar1
cHitPar2
CltHitSubMissile1

HitExplodingArrow - Create a disc of sub missiles with
a defined radius and missile count

2 cHitPar1
cHitPar2
cHitPar3
CltHitSubMissile1
Param1
Param2

HitPlagueJavelin - Create an inner and outer disc of
sub missiles with a specified density for each ring.
Each sub missile will use its “Param1” and “Param2”
fields to define their velocities

3 CltHitSubMissile1
CltHitSubMissile2
CltHitSubMissile3

HitOilPotion - Create “CltHitSubMissile1” and then
randomly create either “CltHitSubMissile2” or
“CltHitSubMissile3”

4 cHitPar1
CltHitSubMissile1

HitDoNova - Create a ring of sub missiles with a
defined count

5 Do nothing

6 Do nothing

7 Do nothing

8 Do nothing

65 ProcessBaalSpirit - The missile will follow different
modes that can change its path and direction, which are
controlled by the ProcessBaalControl function (Code =
64)

66 ProcessWorldstoneShake - Attach the missile to the
source unit. Call the camera shake function at random
periodic delays. There is a small chance to randomly
create either the “baalfx tyreal debris 1”, “baalfx tyreal
debris 2”, or “baalfx tyreal debris 3” at periodic durations.

67 CltParam1
CltParam2
CltParam3
CltSubMissile1
CltSubMissile2
CltSubMissile3

ProcessMissileDelayed - Create a sub missile at a
specified frame at the source unit’s location. Each
parameter controls the specific frame to spawn one of
the sub missiles.

68 CltParam1
CltSubMissile1

ProcessSucFireBall - Create a sub missile every frame
while the current missile is moving where the number of
sub loops for the sub missile is controlled by the
parameter

9 cHitPar1
cHitPar2
cHitPar3
CltHitSubMissile1
ProgOverlay

HitHolyBolt - Determine whether to impact allies, how
that damage is modified by the “dParam1” field based
on the unit type hit, and if the missile should be killed
on hitting an allowed unit. If impacting a unit then
create a sub missile. When hitting an ally, create an
overlay.

10 ProgOverlay HitLightningOverlay - Add an overlay on the target unit

11 Do nothing

12 cHitPar1
cHitPar2
CltHitSubMissile1
CltHitSubMissile2
CltHitSubMissile3
SHitCalc1

HitImmolationArrow - Create a ring of sub missiles
with a defined radius and density count. Use
“SHitCalc1” to control the range (duration) of the sub
missile

13 Param2 HitGuidedArrow - Control the missile flags to either
mark the target, go to the target, or run the missile
retarget function

14 CltHitSubMissile1
CltHitSubMissile2

HitFreezingArrow - Create the “CltHitSubMissile1” sub
missile normally, and create “CltHitSubMissile2” sub
missile in a random rotation

15 Do nothing

16 cHitPar1
ProgOverlay

HitChainLightning - Create duplicate of this missile if
there is a valid unit in range and there are still enough
chain hits. Add an overlay on the target unit.

17 Do nothing

18 cHitPar1
cHitPar2
cHitPar3
CltHitSubMissile1
CltHitSubMissile2
CltHitSubMissile3
CltHitSubMissile4

HitMeteorCenter - Create a ring of “CltHitSubMissile1”
sub missiles where “cHitPar1” controls the density.
Create a “CltHitSubMissile2” sub missile where the
range is controlled by the linked skill’s “Param3” and
“Param4” values from the skills.txt file, and also set
the missile’s light radius value to 12. Create a ring of
“CltHitSubMissile3” sub missiles where “cHitPar2”
controls the density. Create a ring of
“CltHitSubMissile4” sub missiles where “cHitPar3”
controls the density.

19 CltHitSubMissile1
CltHitSubMissile2

HitMonBliz - Randomly choose between creating one
of the sub missiles

20 Do nothing

21 Do nothing

22 Do nothing

23 Do nothing

24 CltHitSubMissile1 HitBoneSpear - Create a sub missile at the target
location

25 cHitPar1
cHitPar2

HitLightningFury - Create a sub missile per enemy
found in an area, where the radius and the maximum

CltHitSubMissile1 number of possible missiles to spawn are controlled
by the parameters

26 cHitPar1
cHitPar2
CltHitSubMissile1
HitSubMissile1

HitFistOfHeavensDelay - If there is no
“HitSubMissile1” sub missile, then do nothing.
Otherwise, create a sub missile per enemy found in an
area, where the radius and the maximum number of
possible missiles to spawn are controlled by the
parameters

27 nullptr

28 cHitPar1
CltHitSubMissile1
Param1

HitMonsterRancidGasPotion - Create a disc of sub
missiles with a specified density. Each sub missile will
use its “Param1” field to define its velocity.

29 cHitPar1
CltHitSubMissile1

HitGrimWard - Create a sub missile with a specified
duration and force its direction to be the same as the
missile that created it

30 cHitPar1
CltHitSubMissile1

HitFrozenOrb - Create a disc of sub missiles with a
specified density.

31 HitIceBreak - Create a missile with a forced animation
rate value of 1, depending on the missile class used.

• If “Missile” equals “icebreaksmall” then create
“icebreaksmallmelt”

• If “Missile” equals “icebreakmedium” then
create “icebreaklargemelt”

• If “Missile” equals “icebreaklarge” then create
“icebreaklargemelt”

• If “Missile” equals “catapult cold explosion”
then create “icebreaklargemelt”

32 cHitPar1
cHitPar2
CltHitSubMissile1
CltHitSubMissile2
ProgOverlay

HitFirehead - Create the “CltHitSubMissile1” sub
missile at the target location and create a ring of
“CltHitSubMissile2” sub missiles where the
parameters control the ring radius and density. Also
add an overlay on the source unit.

33 cHitPar1
CltHitSubMissile1

HitFlyingRocks - Create a random number of sub
missiles in a defined area radius controlled by
“cHitPar1”

34 HitSmithDoNotDraw - Make the source unit invisibile

35 Do nothing

36 Param1 HitHellMeteor - Do nothing is colliding with a wall.
Otherwise, create a disc of randomly selected
missiles. The random missiles chosen are either
“firewall”, “firesmall”, or “firemedium”. The missile’s
“Param1” field controls the disc radius. The duration of
each missile created is calculated with the following:
Range = 25 + RANDOM(0, 25) - 12

37 HitRadHandOfGod - Create a random number of
“radamentholybolt” missiles in random positions in a
radius

38 HitTaintedSunFlash - Create a “taintedsunball” missile

39 HitQueenDeathGlob - Randomly create 1 of the next 2
missile’s defined in the missile.txt file after the missile
that uses this function. For example, if “Missile” equals
“queendeathglob” (ID = 354) and it uses this function,
then randomly choose to create “queendeathsplat1”
(ID = 355) or “queendeathsplat2” (ID = 356).

40 HitHealingBolt - Determine that the target is an allied
unit

41 HitDurielDeathRock - Create 3 “durieldeathdebris”
missiles randomly in a radius value of 6. Create a
“durieldeathsmoke” missile at the previous missile’s
location.

42 HitSoulStoneFragment1 - Create a “hffragment2”
missile on the target unit

43 HitSoulStoneFragment2 - Create a “hffragment3”
missile on the target unit, with 0 velocity, and a
random delay between 10 to 45 frames.

44 CltHitSubMissile1 HitCreateNextMissile - Create a sub missile and set its
direction to match the old missile’s path

45 Do nothing

46 cHitPar1
cHitPar2
HitSubMissile1

HitCatapultChargedBall - Create a disc of sub missiles
where the number of missiles created is controlled by
the following formula: [“cHitPar1”] + [“cHitPar2”] *
([Missile current level] - 1)

47 cHitPar1
cHitPar2
CltHitSubMissile1
CltHitSubMissile2

HitCatapultSpikeBag - Create “CltHitSubMissile1” sub
missiles using the lob function where “cHitPar1” and
“cHitPar2” are used to calculate the number of
missiles in the following formula: MissileCount =
[“cHitPar1”] + [“cHitPar2”] 8 ([Missile current level] - 1).
The radius is this missile lob function is determined by
doing MissileCount / 4.

Also create “CltHitSubMissile2” at the location of the
old missile.

48 HitCatapultCold - Create a “freezingarrowexp1” (ID =
88) missile in the center of the previous missile
location. Also create 8 different “freezingarrowexp2”
(ID = 89) missiles ejected in 8 different directions. Also
create 8 different “catapult cold explosion” (ID = 417)
missiles that have a randomized range and velocity
and use the lob function to launch these missiles
which an initial Z offset equal to 30.

49 Do nothing

50 cHitPar1
cHitPar2
CltHitSubMissile1
CltHitSubMissile2

HitCatapultMeteor - Run the spray rock function to
spawn different missiles. First create multiple
“moltenboulder-flyingrocks” (ID = 456) missiles where
the “cHitPar1” field controls the number of missiles to
spawn and the targeted radius distance to spawn
these missiles is equal to this value multiplied by 2.
The “cHitPar2” field controls these missiles’ velocity.
The “CltHitSubMissile1” sub missile is never spawned,
but these “moltenboulder-flyingrocks” will not spawn
unless this field has a value. Next create a ring of 18
“CltHitSubMissile2” sub missiles.

51 cHitPar1 cHitPar2
CltHitSubMissile1

HitLightJav - Create a disc of the sub missiles where
“cHitPar1” controls the number of sub missiles to
spawn and “cHitPar2” acts as a Boolean Field where if
enabled, it will cause these spawned sub missiles to
have a randomized path.

52 cHitPar1
cHitPar2
CltHitSubMissile1
CltHitSubMissile2
CltHitSubMissile3

HitMoltenBoulder - If hitting the target or a monster
with the “large” flag enabled, then create
“CltHitSubMissile1” sub missile. Also run the spray
rock function to spawn different missiles. First create
multiple “moltenboulder-flyingrocks” (ID = 456)
missiles where the “cHitPar1” field controls the
number of missiles to spawn and the targeted radius
distance to spawn these missiles is equal to this value
multiplied by 2. The “cHitPar2” field controls these
missiles’ velocity. The “CltHitSubMissile2” sub missile
is never spawned, but these “moltenboulder-
flyingrocks” will not spawn unless this field has a
value. Next create a ring of 18 “CltHitSubMissile3” sub
missiles.

53 cHitPar1
cHitPar2
cHitPar3
CltHitSubMissile1

CreateRollingBoulder - Create the sub missile that
bounces, where “cHitPar1” controls the number of
bounces, “cHitPar2” controls the bounce dampening
percentage, and “cHitPar3” controls the number of
steps, or the lifetime remaining in ticks (Minimum
value equal to 1).

54 CltHitSubMissile1 HitVineTrail - Create the sub missile and force it to get
the same direction as the previous missile

55 CltHitSubMissile1
CltHitSubMissile2
CltHitSubMissile3

HitDebris - Create all 3 sub missiles at the source unit
location

56 CltHitSubMissile1 HitRecycleVine - Create the sub missile at the source
unit location and force it to get the same direction as
the previous missile

57 cHitPar1
cHitPar2
CltHitSubMissile1

HitBaalSpawn - Create a disc ring of sub missiles
where the parameters control the radius and density of
the ring, respectively

58 Do nothing

59 Do nothing

60 cHitPar1
CltHitSubMissile1
CltHitSubMissile2

HitNihlathak1 - Create the “CltHitSubMissile1” sub
missile at the location of the previous missile. Create
the “CltHitSubMissile2” sub missile at the same
position, but “cHitPar1” controls the z offset of the sub
missile.

61 HitWorldstoneShake - Stop the camera shake

62 cHitPar1
CltHitSubMissile1

HitBaalRandomBolts - Create the sub missile where
the range is randomized by the parameter (minimum
value equals 1) and the target location is also
randomized by this range value

63 cHitPar1
CltHitSubMissile1
Param1
Param2

HitBaalTauntPoison - Create a disc of sub missiles
where “cHitPar1” controls the ring density (minimum
value equals 1). Each sub missile will use its “Param1”
and “Param2” fields to define their velocities

64 cHitPar1
CltHitSubMissile1

HitBladeFury - Create a disc of sub missiles with the
parameter controlling the ring density (minimum value
equals 1)

pSrvDoFunc - Uses an ID value to select a specialized function for the missile’s
behavior while active every frame on the server side

Code Parameters Description

0
(or
empty)

 Do nothing

1 MissileDoArrow - Perform the standard missile move
function. This is called in most of the other functions

2 SrvCalc1
SubMissile1

MissileDoPoisonJavelin - Create a sub missile with a
specified number of subloops

3 StillMissileKludge - Check the missile velocity to determine
whether or not to set the collision mask to Missile

4 Do nothing

5 SubStart
SubStop

Firewall - Create an animation sequence for the missile, set
the collision mask to Missile

6 SubMissile1 MissileMakeFirewall - Create sub missiles based on the
count that was passed to this missile

7 Param1 MissileGuidedArrow - Use the parameter to control the
retarget time on the unit

8 Param1
Param2
Param3
SubMissile1

MissileMonBliz - Create multiple sub missiles, using the
parameters as the spawn radius, spawn frequency, and
level divisor

9 SubMissile1 MissileMakeBatLightning - Create a sub missile based on
the missile’s path moved

10 SubMissile1 MissileBlizzard - Create multiple sub missiles, use the
linked skill’s “calc1” field for the radius, and the “calc2” field
for the sub missile spawn frequency

11 Param1
Param2
Param3

FingerMageSpider - Shoot a missile that can be retargeted.
Uses the parameters to control the periodic delay between
retargeting, the maximum distance to retarget, and the
distance delta for where to retarget.

12 SubMissile1 MissileDiabWallMaker - Shoot a missile and have that
missile create sub missiles as it is moving

13 MissileBoneWallMaker - Shoot a missile and have that
missile create pet summons as it is moving, using the linked
skill’s “pettype” field from skills.txt

14 Param1
Param2

MissileDoGrimWard - Shoot a missile where every periodic
delay, do a function from the “srvdofunc” field in the skills.txt
file. “Param1” controls the periodic frame delay, and
“Param2” controls which function code number to use.

15 Param1
Param2
SubMissile1

MissileFrozenOrb - Shoot a missile and have that missile
shoot sub missiles in different directions as it is moving.
“Param1” controls the sub missile spawn rate and “Param2”
controls the change in direction per sub missile spawn.

16 Param1
Param2

MissileFrozenOrbNova - Shoot a missile in a set direction.
“Param1” controls the delay until the missile moves and
“Param2” controls the periodic frame delay for updating the
missile’s target path

17 Param1
Param2
Param3
Param4
Param5
SubMissile1

MissileDoCairnStones - Shoot sub missiles in a radius and
then after a delay, create a portal to another level. Uses
parameters to control the delays between creating sub
missiles, the radius to create the sub missiles, which level
ID to link the portal to, and the delay before creating the
portal.

18 Param1
Param2
Param3

DoTowerChestSpawner - Open the chest object to spawn
items, and create random gold piles in an area

19 DoRadamentDeath - Use the Paladin Redemption skill
function on nearby corpses in an area

20 MissileAttachUntilDead - Shoot the missile and keep it
attached to the source until. If the source unit dies, then kill
the missile.

21 SubMissile1 MissileDoDistraction - Create a sub missile and run the
MissileAttachUntilDead function

22 Param1
SubMissile1

ProcessTrailJav - Shoot the missile and have it create 2 sub
missiles every frame while it is moving

23 Param1
SubMissile1

ProcessSucFireBall - Create a sub missile every frame
while the missile is moving, where the parameter controls
the sub missile’s subloops

24 Param1
SubMissile1

Duplicate of function 23

25 SubMissile1 MissileEruption - Shoot the missile and have it create sub
missiles in a radius at a periodic rate, which is controlled by
the link skill’s “calc1” and “calc2” fields.

26 Param1
SubMissile1

ProcessVines - Shoot the missile and have it create sub
missiles at a periodic rate, which is controlled by the
parameter

27 Param1
Param2

MissileTornado - Shoot the missile and have it deal damage
at a periodic rate in a radius, which is controlled by the
parameters or by the linked skill’s “calc4” and
“aurarangecalc” fields

28 Param1
Param2
Param3
Param4
Param5
SubMissile1

ProcessVolcano - Shoot the missile and have it periodically
create sub missiles in a lobbing pattern. Use parameters to
control the periodic frame delay for spawning sub missiles,
the radius to spawn the sub missiles, the start and stop
frame count for when to spawn and stop spawning sub
missiles, and the lob start value for the sub missiles

29 Param1 ProcessRecycleDelay - Shoot the missile and after a certain
delay, process any life steal or mana steal, based on the
linked skill’s “calc1” and “calc2” fields

30 Param1
Param2
SubMissile1

MissileRabiesPlague - Shoot the missile, have it attached to
the source unit, and have it periodically spawn sub missiles
in a radius

31 SubMissile1 ProcessMakePerpMissiles - Shoot the missile and have it
create 2 sub missiles that are fired in perpendicular
directions

32 SubMissile1 MissileTigerFuryPath - Shoot the missile using the
MissileGuidedArrow function and have it create a sub
missile

33 Param1
Param2
SubMissile1

ProcessRecycleManaDelay - Shoot the missile and after a
certain delay, process any mana steal, based on the linked
skill’s “calc1” field, and create a sub missile after another
certain delay

34 Param1
Param2
Param3
Param4
SubMissile1
SubMissile2

ProcessBaalTaunt - Randomly choose one of the 4
parameters to select a delay and randomly spawn one of
the sub missiles

35 Param1 MissileDoChaosIce - Shoot the missile and have it repath in
a perpendicular direction after a periodic delay

36 MissileDoBaalDeathControl - Shoot the missile and spawn
the Tyrael unit

37 SubMissile1
SubMissile2
SubMissile3

ProcessMissileDelayed - Shoot the missile and have it
create 1 of each sub missile

pSrvHitFunc - Uses an ID value to select a specialized function for the missile’s
behavior when hitting something on the server side

Code Parameters Description

0
(or
empty)

 Do nothing

1 sHitPar1 RadialFireDamage - Deal elemental damage in an area
where the parameter controls the damage radius

2 sHitPar1
sHitPar2
HitSubMissile1

HitPlagueJavelin - Kill the missile while dealing its
damage, and also deal radial poison damage in an area
by creating sub missiles in a defined radius for a
specified number of loops

3 sHitPar1 NoTargetRadialDamage - Deal the missile damage in a
defined area radius

4 sHitPar1
HitSubMissile1
HitSubMissile2
HitSubMissile3
HitSubMissile4

HitCreateMissile - Determine whether to kill this missile
on hit or not, and then create 1 of each hit sub missile

5 sHitPar1
HitSubMissile1

HitDoNova - Create a certain number of sub missiles and
shoot them outwards in an equalized distance from the
location of this missile

6 sHitPar1
sHitPar2

HitSummon - Create a monster in a specific starting
mode at the missile’s location. The “sHitPar1” field
controls the monster ID to use, and the “sHitPar2” field
controls which mode to set on the monster.

7 sHitPar1
sHitPar2
sHitPar3
dParam1

HitHolyBolt - Determine whether to impact allies, how
that damage is modified by the “dParam1” field based on
the unit type hit, and if the missile should be killed on
hitting an allowed unit

8 HitBlaze - The missile will deal damage if the source unit
has the “blaze” state

9 sHitPar1
sHitCalc1
HitSubMissile1

HitImmolationArrow - Deal radius damage and create
sub missiles with specified range values in a defined
radius. If there is a freeze length or cold length from the
elemental damage, then set it to 0.

10 HitGuidedArrow - Control if the missile should be
redirected on a target when possible, or if it should be
destroyed

11 sHitPar1
HitSubMissile1
HitSubMissile2
HitSubMissile3
HitSubMissile4

HitCreateMissileNoDmg - Kill this missile on hit and
create 1 of each hit sub missile

12 sHitPar1 HitChainLightning - Create duplicate of this missile if
there is a valid unit in range and there are still enough
chain hits

13 sHitPar1
sHitPar2

HitGlacialSpike - Deal elemental damage in a specified
radius with a specified elemental duration, if applicable

14 sHitPar1
sHitPar2
HitSubMissile1

HitMeteorCenter - Deal damage in a specified radius and
create a ring of hit sub missiles (controlled by a count)
and define the duration of these sub missiles based on
the linked skill’s “Param3” and “Param4” values

15 HitSubMissile1 HitSpiderLay - Kill the missile and create a sub missile at
the location

16 HitSpiderGoo - Apply the state from the linked skill’s
“auratargetstate” field with a duration defined by the
linked skill’s “calc4” field

17 HitHowl - Use the linked skill’s “auratargetstate”, “calc2”,
“calc3”, and “Param2” fields to apply a state (with a
defined level and duration) to units in a defined radius.
Also call the AIScare function.

18 HitShout - Kill the missile and call the AddShout function
on hit allied units, which applies the “aurastate” state
defined in the linked skill

19 HitFingerMageSpiderHit - Kill the missile and apply the
“auratargetstate” defined in the linked skill

20 sHitPar1
sHitPar2
HitSubMissile1

HitLightningFury - Kill the missile and create a specified
number of sub missiles in a radius, per unit targeted in
that radius

21 HitBattleCry - Kill the missile and apply the
“auratargetstate” state on the target unit, defined in the
linked skill

22 sHitPar1
sHitPar2
HitSubMissile1

HitFistOfHeavensDelay - Kill the missile and create a
specified number of sub missiles in a defined radius, per
filtered unit targeted in that radius

23 sHitPar1 HitMissileSkill - Kill the missile and do a function from the
“srvdofunc” field in the skills.txt file, where the “sHitPar1”
field controls the function ID to use

24 sHitPar1 RadialMissileDamage - Kill the missile and damage in an
area controlled by a defined radius

25 sHitPar1
HitSubMissile1

HitMonsterRancidGasPotion - Kill the missile and deal
radial poison damage in an area by creating sub missiles
in a defined radius for a specified number of loops

26 sHitPar1
HitSubMissile1

HitGrimWardStart - Kill the missile and create a sub
missile with a specified duration

27 HitKillMissile - Kill the missile

28 HitGrimWardScare - Kill the missile and apply the
AiScare function to all monsters in a radius controlled by
the “calc2” field from the linked skill with a distance and
duration value controlled by the “Param5” and “Param6”
values from the linked skill.

29 sHitPar1
HitSubMissile1

HitFrozenOrb - Kill the missile and create specified
number sub missiles in a circular outwards direction from
that location

30 sHitPar1
sHitPar2

RadialStunDamage - Kill the missile and do stun damage
in a defined radius with a defined stun length

31 HitFirehead - Kill the missile and deal elemental damage
directly to the target unit’s life, ignoring resistances

32 Param4 MissileHitCairnStones - Create a portal linked to a
specified level area ID

33 HitTowerChest - Set the dungeon room to untile

34 Do nothing

35 OrbMistHit - Kill the missile. Set the missile’s tracked
object’s dungeon room to untile and set that object’s
mode from Neutral to Operating.

36 HitSubMissile1 HitCreateNextMissile - Kill the missile and create a sub
missile with parameters copied over

37 HitBladeCreeper - If this hits a target unit then deal
damage

38 sHitPar1
sHitPar2
HitSubMissile1

HitCatapultChargedBall - Kill the missile and create a
specified number of sub missiles in a ring

39 HitImpSpawnMonsters - Kill the missile and spawn an
appropriate monster, based on the allowed monsters in
the area level

40 sHitPar1
sHitPar2
HitSubMissile1

HitCatapultSpikeBag - Kill the missile and create a
specified number of sub missiles that are lobbed
outwards in a radius

41 Do nothing

42 Do nothing

43 HitHealing - Use the linked skill’s physical damage as the
amount of healing done to the target unit. Determine
whether to kill the missile or not, based on the
“CollideKill” field

44 sHitPar1 RadialDamage - Kill the missile and deal damage in a
specified radius

45 sHitPar1
sHitPar2
HitSubMissile1

HitLightJav - Kill the missile and create a number of sub
missiles in a disc. Determine whether these sub missiles
created should use a random path or not.

46 Do nothing

47 sHitPar1
sHitPar2
HitSubMissile1

BoulderExplode - Kill the missile and create an explosion
with a defined radius and a ring of sub missiles with a
defined count of missiles

48 HitSubMissile1 CreateRollingBoulder - Kill the missile and create a sub
missile

49 Do nothing

50 sHitPar1 HitPlagueVines - If the range of the missile minus the
“sHitPar1” parameter is greater than the missile’s current
frame, then deal damage

51 HitSubMissile1
HitSubMissile2
HitSubMissile3

HitDebris - Kill the missile and create the 3 sub missiles,
if possible

52 sHitPar1
HitSubMissile1

HitBladeFury - Kill the missile and spawn sub missiles in
multiple directions depending on the “sHitPar1” value

53 HitRabiesContagion - Get the elemental duration from
the linked skill and compare that with the duration of the
missile to determine to kill the missile or create a new
one, depending on the target having the linked skill’s
“auratargetstate” state

54 HitBaalSpawnMonsters - Kill the missile and spawn a
monster in Neutral mode

55 sHitPar1 HitBaalInferno - Drain a percentage of the target’s mana
(from 0 to 100) and deal damage

56 sHitPar1
HitSubMissile1

HitArmageddon - Kill the missile, deal damage in an area
with a defined radius, and create a sub missile

57 MissileHitBaalDeathControl - Create the Tyrael unit

58 sHitPar1
HitSubMissile1

HitBaalRandomBolts - Kill the missile and create a sub
missile targeting a random randomized location range
controlled by “sHitPar1”

59 sHitPar1
HitSubMissile1
Param1
Param2

HitBaalTauntPoison - Kill the missile and create an inner
and outer disc of sub missiles with a specified count
(using “sHitPar1”) of missiles and with incremental
specified velocities (the sub missile will use its “Param1”
and “Param2” fields)

pSrvDmgFunc - Uses an ID value to select a specialized function that gets called
before damaging a unit on the server side

Code Parameters Description

0
(or
empty)

 Default

1 DmgCalc1 DamageFireArrow - Converts a percentage of physical
damage to elemental damage per level

2 dParam1 DamageIceArrow - Converts the Cold Length value to
Freeze Length. Uses the parameter value as a percentage
increase the Freeze Length

3 dParam1 DamageFireWall - Uses the parameter as a random
chance to use an attack result Soft Hit flag

4 DamageIceBlast - Converts the Cold Length value to the
Freeze Length value

5 dParam1
dParam2

DamageBlessedHammerNew - Uses “dParam1” as a
damage percent multiplier against Undead type monsters.
Uses “dParam2” as a damage percent multiplier against
Demon type monsters.

6 DamageNoItem - If the source unit is not a Mercenary, then
set the target unit to be unable to drop items when it dies.

7 dParam1 DamageWarCry - Uses the parameter as the Stun Length.
If the parameter equals 0, then use the source unit’s
related skill’s “Calc4” field as the Stun Length value. If the
skill is null, then use the missile’s default skill’s Param1 &
Param2 values.

8 ProgOverlay DamageEruption - Create an overlay on the target

9 dParam1 DamageTwister - Uses the parameter as the Stun Length,
and sets the damage Hit Class layer to Stun Layer. If the
parameter equals 0, then use the source unit’s related
skill’s “Calc2” field as the Stun Length.

10 DamageFreeze - Checks that the missile has stats and
then sets the Freeze Length value to equal the Cold Length
value.

11 DoRabiesDamage - Checks the remaining poison duration
on the target unit and if it is less than 10, it will use the
linked skill’s Elemental damage and duration length
calculation (See skills.txt) to apply a new poison.

12 sDamageLightningJavelin

13 dParam1
dParam2

DamageBlessedHammerOld - Uses the source units
physical damage percent stat as a percentage modifier for
the missile’s damage, and then calls the
“DamageBlessedHammerNew” function (See function code
5)

14 dParam1
dParam2

DamageMoltenBoulder - Uses “dParam2” as the percent
chance to knockback the target unit. Uses “dParam1” to
control how this percent chance is modified. Also relies on
the “small” and “large” fields from the monstats2.txt file.

• If the target unit is a player and “dParam1” is
greater than or equal to 1, then set the knockback
chance to “dParam2”

• If “dParam1” is less than 1 and the monster is a
small size, then set the knockback chance to
“dParam2”

• If “dParam1” equals 1 and the monster is a small
size, then set the knockback chance to “dParam2” *
2

• If “dParam1” equals 1 and the monster is a large
size, then set the knockback chance to “dParam2”

• If “dParam1” is greater than 1 and the monster is a
small size, then set the knockback chance to
“dParam2” * 3

• If “dParam1” is greater than 1 and the monster is a
large size, then set the knockback chance to
“dParam2” * 2

• If “dParam1” is greater than 1 and the monster is
not a small or large size, then set the knockback
chance to “dParam2”

15 sHitPar2
dParam1

DamageHolyBolt - Uses “dParam1” as a percent damage
multiplier for the total elemental damage, depending on the
use case of “sHitPar2”

• If the target unit is a monster
o If “sHitPar2” equals 0, then do not modify the

damage
o If “sHitPar2” equals 1, then only modify the

damage if the monster is an Undead type
o If “sHitPar2” equals 2, then only modify the

damage if the monster is a Demon type
o If “sHitPar2” equals 3, then only modify the

damage if the monster is an Undead or
Demon type

• If the target unit is a player
o If “sHitPar2” equals 0, then modify the damage

o If “sHitPar2” equals 0, then do not modify the

damage

SrvCalc1 - Numeric calculation field. Used as a parameter for the “pSrvDoFunc” field.
Param1 (to Param5) - Integer field. Used as a parameter for the “pSrvDoFunc” field.
CltCalc1 - Numeric calculation field. Used as a parameter for the “pCltDoFunc” field.
CltParam1 (to CltParam5) - Integer field. Used as a parameter for the “pCltDoFunc”
field.
SHitCalc1 - Numeric calculation field. Used as a parameter for the “pSrvHitFunc” field.
sHitPar1 (to sHitPar3) - Integer field. Used as a parameter for the “pSrvHitFunc” field.
CHitCalc1 - Numeric calculation field. Used as a parameter for the “pCltHitFunc” field.
cHitPar1 (to cHitPar3) - Integer field. Used as a parameter for the “pCltHitFunc” field.
DmgCalc1 - Numeric calculation field. Used as a parameter for the “pSrvDmgFunc”
field.

dParam1 & dParam2 - Integer field. Used as a parameter for the “pSrvDmgFunc” field.

Vel - The baseline velocity of the missile, which is the speed at which the missile moves
in the game world. This is measured by distance in pixels traveled per frame.
MaxVel - The maximum velocity of the missile. If the missile’s current velocity increases
(based on other fields), then this field controls how high the velocity is allowed to go.
VelLev - Adds extra velocity based on the caster unit’s level. Each level gained beyond
level 1 will add this value to the baseline “Vel” field.
Accel - Controls the acceleration of the missile’s movement. A positive value will
increase the missile’s velocity per frame. A negative value will decrease the missile’s
velocity per frame. The bigger positive or negative values will cause the velocity to
change faster per frame.

Range - Controls the baseline duration that the missile will exist for after it is created.
This is measured in frames where 25 Frames = 1 second.
LevRange - Adds extra duration based on the caster unit’s level. Each level gained
beyond level 1 will add this value to the baseline “Range” field.

Light - Controls the missile’s Light Radius size (measured in grid sub-tiles)
Flicker - If greater than 0, then every 4th frame while the missile is active, the Light
Radius will randomly change in size between base size to its base size plus this value
(measured in grid sub-tiles)
Red - Controls the red color value of the missile’s Light Radius (Uses a value from 0 to
255)
Green - Controls the green color value of the monster’s Light Radius (Uses a value
from 0 to 255)
Blue - Controls the blue color value of the monster’s Light Radius (Uses a value from 0
to 255)

InitSteps - The number of frames the missile needs to be alive until it becomes visible
on the game client. If the missile’s current duration in frame count is less than this value,
then the missile will appear invisible.
Activate - The number of frames the missile needs to be alive until it becomes active. If
the missile’s current duration in frame count is less than this value, then the missile will
not collide.
LoopAnim - Boolean Field. If equals 1, then the missile’s animation will repeat once the
previous animation finishes. If equals 0, then the missile’s animation will only play once,
which can cause the missile to appear invisible at the end of the animation, but it will still
be alive.
CelFile - Defines which DCC missile file to use for the visual graphics of the missile
animrate - Controls the visual speed of the missile’s animation graphics. The overall
missile animation rate is calculated as the following: 256 * [“animrate”] / 1024
AnimLen - Defines the length of the missile’s animation in frames where 25 Frames = 1
second. This field can sometimes be used to calculate the missile animation rate,
depending on the missile function used.

AnimSpeed - Controls the visual speed of the missile’s animation graphics on the client
side (Measured in 16ths, where 16 equals 1 frame per second). This can be overridden
by certain missile functions.
RandStart - If this value is greater than 0, then the missile will start at a random frame
between 0 and this value when it begins its animation.
SubLoop - Boolean Field. If equals 1, then the missile will use a specific sequence of
its animation while it is alive, depending on its creation. If equals 0, then the missile will
not use a sequenced animation.
SubStart - The starting frame of the sequence animation. This requires that the
“SubLoop” field is enabled.
SubStop - The ending frame of the sequence animation. After reaching this frame, then
the sequenced animation will loop back to the “SubStart” frame. This requires that the
“SubLoop” field is enabled.

CollideType - Defines the missile’s collision type, which controls what units, objects, or
parts of the environment that the missile can impact

Code Description

0 No collision

1 Player unit collision

2 Monster unit collision

3 Player and Monster unit collision

4 No collision

5 Monster unit collision

6 Barrier collision, such as doors

7 Missile collision

8 Player, Monster, Barrier, and Wall collision

CollideKill - Boolean Field. If equals 1, then the missile will be destroyed when it
collides with something. If equals 0, then the missile will not be destroyed when it
collides with something.
CollideFriend - Boolean Field. If equals 1, then the missile can collide with friendly
units, including the caster. If equals 0, then the missile will ignore friendly units.
LastCollide - Boolean Field. If equals 1, then the missile will track the last unit that it
collided with, which is useful for making sure the missile does not hit the same unit
twice. If equals 0, then ignore this.
Collision - Boolean Field. If equals 1, then the missile will have a missile type path
placement collision mask when it is initialized or moved. If equals 0, then the missile will
have no placement collision mask when it is created or moved.
ClientCol - Boolean Field. If equals 1, then the missile will check collision on the client,
depending on the missile’s “CollideType” field. If equals 0, then ignore this.
ClientSend - Boolean Field. If equals 1, then the server will create the missile on the
client. This can be used when reloading area levels or transitioning units between
areas. If equals 0, then ignore this.
NextHit - Boolean Field. If equals 1, then the missile will use the next delay. If equals 0,
then ignore this.

NextDelay - Controls the delay in frame length until the missile is allowed to hit the
same unit again. This field relies on the “NextHit” field being enabled.

xoffset & yoffset & zoffset - Specifies the X, Y, and Z location coordinates (measured
in pixels) to offset to visually draw the missile based on its actual location. This will only
offset the visual graphics of the missile, not the missile itself. The Z axis controls the
visual height of the missile.
Size - Defines the diameter in sub-tiles (for both the X and Y axis) that the missile will
occupy. This affects how the missile will collide with something or how the game will
handle placement for the missile.

SrcTown - Boolean Field. If equals 1, then the missile will be destroyed if the caster unit
is located in an act town. If equals 0, then ignore this.
CltSrcTown - If this value is greater than 0 and the “LoopAnim” field is disabled, then
this field will control which frame to set the missile’s animation when the player is in
town. This value gets subtracted from the “AnimLen” value to determine the frame to set
the missile’s animation.
CanDestroy - Boolean Field. If equals 1, then the missile can be attacked and
destroyed. If equals 0, then the missile cannot be attacked.

ToHit - Boolean Field. If equals 1, then this missile will use the caster’s Attack Rating
stat to determine if the missile should hit its target. If equals 0, then the missile will
always hit its target.
AlwaysExplode - Boolean Field. If equals 1, then the missile will always process an
explosion when it is killed, which can use a server hit function (See “pSrvHitFunc”) and
can use the “HitSound” and “ExplosionMissile” fields on the client side. If equals 0, then
the missile will only rely on proper collision hits to process an explosion.
Explosion - Boolean Field. If equals 1, then the missile will be classified as an
explosion which will make it use different handlers for finding nearby units and dealing
damage. If equals 0, then ignore this.

Town - Boolean Field. If equals 1, then the missile is allowed to be alive when in a town
area. If equals 0, then the missile will be immediately destroyed when located within a
town area.
NoUniqueMod - Boolean Field. If equals 1, then the missile will not receive bonuses
from Unique monster modifiers. If equals 0, then the missile will receive bonuses from
Unique monster modifiers.
NoMultiShot - Boolean Field. If equals 1, then the missile will not be affected by the
Multi-Shot monster modifier. If equals 0, then the missile will be affected by the Multi-
Shot monster modifier.

Holy - Controls a bit field flag where each value is a code to allow the missile to
damage a certain type of monster

Code Description

0 Damage all units

1 Only damage Undead

2 Only damage Demons

4 Only damage Beasts

CanSlow - Boolean Field. If equals 1, then the missile can be affected by the
“slowmissiles” state (See states.txt). If equals 0, then the missile will ignore the
“slowmissiles” state.
ReturnFire - Boolean Field. If equals 1, then missile can trigger the Sorceress Chilling
Armor event function. If equals 0, then this missile will not trigger that function.
GetHit - Boolean Field. If equals 1, then the missile will cause the target unit to enter
the Get Hit mode (GH), which acts as the hit recovery mode. If equals 0, then ignore
this.
SoftHit - Boolean Field. If equals 1, then the missile will cause a soft hit on the unit,
which can trigger a blood splatter effect, hit flash, and/or a hit sound. If equals 0, then
ignore this.
KnockBack - Controls the percentage chance (out of 100) that the target unit will be
knocked back when hit by the missile

Trans - Controls the alpha mode for how the missile is displayed, which can affect
transparency and blending

Code Description

0 No Transparency

1 Black Alpha Transparency

2 White Alpha Transparency

Pierce - Boolean Field. If equals 1, then allow the Pierce modifier function to work with
this missile. If equals 0, then do not allow Pierce to work with this missile.

MissileSkill - Boolean Field. If equals 1, then the missile will look up the skill that
created it and use that skill’s damage instead of the missile damage. If equals 0, then
ignore this.
Skill - Links to the “skill” field from the skills.txt file. This will look up the specified skill’s
damage and use it for the missile instead of using the missile’s defined damage.

ResultFlags - Controls different flags that can affect how the target reacts after being
hit by the missile. Uses an integer value to check against different bit fields by using the
“&” operator. For example, if the value equals 5 (binary = 101) then that returns true for
both the 4 (binary = 100) and 1 (binary = 1) bit field values.

Bit Field Value Binary Equivalent Value Description

1 0000000000000001 Hit

2 0000000000000010 Death

4 0000000000000100 Get Hit

8 0000000000001000 Knockback

16 0000000000010000 Block

32 0000000000100000 No Passive

128 0000000010000000 Dodge

256 0000000100000000 Avoid

512 0000001000000000 Evade

4096 0001000000000000 Ignore Friendly

8192 0010000000000000 Double Damage

16384 0100000000000000 Soft Hit

32768 1000000000000000 Two Hand-to-Hand Block

HitFlags - Controls different flags that can affect the damage dealt when the target is hit
by the missile. Uses an integer value to check against different bit fields by using the “&”
operator. For example, if the value equals 6 (binary = 110) then that returns true for both
the 4 (binary = 100) and 2 (binary = 10) bit field values.

Bit Field Value Binary Equivalent Value Description

1 00000000001 Do not add physical damage

2 00000000010 Do not add any damage

4 00000000100 No Life Steal

8 00000001000 No Mana Steal

16 00000010000 No Stamina Steal

32 00000100000 Use Source Damage

128 00010000000 No Triggered Events

256 00100000000 Bypass Undead

512 01000000000 Bypass Demons

1024 10000000000 Bypass Beasts

HitShift - Controls the percentage modifier for the missile’s damage. This value cannot
be less than 0 or greater than 8. This is calculated in 256ths, where 8=256/256,
7=128/256, 6=64/256, 5=32/256, 4=16/256, 3=8/256, 2=4/256, 1=2/256, and 0=1/256.
ApplyMastery - Boolean Field. If equals 1, then apply the caster’s elemental mastery
bonus modifiers to the missile’s elemental damage. If equals 0, then ignore this.
SrcDamage - Controls how much of the source unit’s damage should be added to the
missile’s damage. This is calculated in 128ths and acts as a percentage modifier for the
source unit’s damage that added to the missile. If equals -1 or 0, then the source
damage is not included.
Half2HSrc - Boolean Field. If equals 1 and the source unit is currently wielding a 2-
Handed weapon, then the source damage (see “SrcDamage”) is reduced by 50%. If
equals 0, then ignore this.
SrcMissDmg - If the missile was created by another missile, then this controls how
much of the source missile’s damage should be added to this missile’s damage. This is
calculated in 128ths and acts as a percentage modifier for the source missile’s damage
that added to this missile. If equals 0, then the source damage is not included.

MinDamage - Minimum baseline physical damage dealt by the missile
MinLevDam1 (to MinLevDam5) - Controls the additional minimum physical damage
dealt by the missile, calculated using the leveling formula between 5 level thresholds of
the missile’s current level. The level thresholds are levels 2-8, 9-16, 17-22, 23-28, 29
and beyond. These 5 level thresholds correlate to each field.
MaxDamage - Maximum baseline physical damage dealt by the missile
MaxLevDam1 (to MaxLevDam5) - Controls the additional maximum physical damage
dealt by the missile, calculated using the leveling formula between 5 level thresholds of
the missile’s current level. The level thresholds are levels 2-8, 9-16, 17-22, 23-28, 29
and beyond. These 5 level thresholds correlate to each field.

DmgSymPerCalc - Calculation Field. Determines the percentage increase to the
physical damage dealt by the missile based on specified skill levels.

EType - Defines the type of elemental damage dealt by the missile. If this field is empty,
then the related elemental fields below will not be used.

Code Description

(empty) None

fire Fire

ltng Lightning

mag Magic

cold Cold (Uses “ELen”)

pois Poison (Uses “ELen”)

life Life Drain

mana Mana Drain

stam Stamina Drain

stun Stun (Uses “ELen”)

rand Randomly select between Fire, Lightning, Magic, Cold, or Poison

burn Burning (Uses “ELen”)

frze Freeze (Uses “ELen”)

EMin - Minimum baseline elemental damage dealt by the missile
MinELev1 (to MinELev5) - Controls the additional minimum elemental damage dealt by
the missile, calculated using the leveling formula between 5 level thresholds of the
missile’s current level. The level thresholds are levels 2-8, 9-16, 17-22, 23-28, 29 and
beyond. These 5 level thresholds correlate to each field number.
EMax - Maximum baseline elemental damage dealt by the missile
MaxELev1 (MaxELev5) - Controls the additional maximum elemental damage dealt by
the missile, calculated using the leveling formula between 5 level thresholds of the
missile’s current level. The level thresholds are levels 2-8, 9-16, 17-22, 23-28, 29 and
beyond. These 5 level thresholds correlate to each field.
EDmgSymPerCalc - Calculation Field. Determines the percentage increase to the
elemental damage dealt by the missile based on specified skill levels.
ELen - The baseline elemental duration dealt by the missile. This is calculated in frame
lengths where 25 Frames = 1 second. These fields only apply to appropriate elemental
types with a duration.
ELevLen1 (to ELevLen3) - Controls the additional elemental duration added by the
missile, calculated using the leveling formula between 3 level thresholds of the missile’s
current level. The level thresholds are levels 2-8, 9-16, 17 and beyond. These 3 level
thresholds correlate to each field. These fields only apply to appropriate elemental types
with a duration.

HitClass - Defines the missile’s own hit class into the damage routines, mainly used for
determining hit sound effects and overlays. This field only handles the hit class layers,
so values beyond these defined bits are ignored. Uses an integer value to check against
different bit fields by using the “&” operator. For example, if the value equals 6 (binary =

110) then that returns true for both the 4 (binary = 100) and 2 (binary = 10) bit field
values.

Bit Field Value Binary Equivalent Value Description

16 00010000 Double Layer

32 00010100 Fire Layer

48 00011110 Cold Layer

64 01000000 Lightning Layer

80 01010000 Poison Layer

96 01100000 Stun Layer

112 01110000 Bash Layer

128 10000000 Thorns Layer

144 10010000 Sanctuary Layer

160 10100000 Silent Voice Layer

176 10110000 Goo Layer

NumDirections - The number of directions allowed by the missile, based on the DCC
file used (see “CelFile”). This value should be within the power of 2, with a minimum
value of 1 or up to a maximum value of 64.
LocalBlood - Boolean Field. If equals 1, then change the color of blood missiles to
green. If equals 0, then keep the blood missiles colored the default red.

DamageRate - Controls the “damage_framerate” stat (Calculated in 1024ths), which
acts as a percentage multiplier for the physical damage reduction and magic damage
reduction stat modifiers, when performing damage resistance calculations. This is only
enabled if the value is greater than 0.

TravelSound - Points to a “Sound” field defined in the sounds.txt file. Used when the
missile is created and while it is alive.
HitSound - Points to a “Sound” field defined in the sounds.txt file. Used when the
collides with a target.

ProgSound - Points to a “Sound” field defined in the sounds.txt file. Used for a
programmed special event based on the client function.
ProgOverlay - Points to the “overlay” field defined in the Overlay.txt file. Used for a
programmed special event based on the server or client function.

ExplosionMissile - Points to the “Missile” field for another missile. Used for the missile
created on the client when this missile explodes.

SubMissile1 (to SubMissile3) - Points to the “Missile” field for another missile. Used
for creating a new missile based on the server function used.
HitSubMissile1 (to HitSubMissile4) - Points to the “Missile” field for another missile.
Used for a new missile after a collision, based on the server function used.
CltSubMissile1 (to CltSubMissile3) - Points to the “Missile” field for another missile.
Used for creating a new missile based on the client function used.

CltHitSubMissile1 (to CltHitSubMissile4) - Points to the “Missile” field for another
missile. Used for a new missile after a collision, based on the client function used.

misc.txt

Overview

This file controls the functionalities for miscellaneous type items, such as the non-
weapons and non-armor items.

This file is loaded together with other similar files in the following order: weapons.txt,
armor.txt, misc.txt
These combined files form the items structure. Technically these files share the same
fields, but some fields are exclusive for specific item types, so they are not displayed in
the data files that do not need them.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

name - This is a reference field to define the item
version - Defines which game version to create this item (0 = Classic mode | 100 =
Expansion mode)
compactsave - Boolean Field. If equals 1, then only the item’s base stats will be stored
in the character save, but not any modifiers or additional stats. If equals 0, then all of the
items stats will be saved.
rarity - Determines the chance that the item will randomly spawn (1/#). The higher the
value then the rarer the item will be. This field depends on the “spawnable” field being
enabled, the “quest” field being disabled, and the item level being less than or equal to
the area level. This value is also affected by the relative Act number that the item is
dropping in, where the higher the Act number, then the more common the item will drop.
spawnable - Boolean Field. If equals 1, then this item can be randomly spawned. If
equals 0, then this item will never randomly spawn.

speed - If the item type is an armor, then this will affect the Walk/Run Speed reduction
when wearing the armor. If the item type is a weapon, then this will affect the Attack
Speed reduction when wearing the weapon.
reqstr - Defines the amount of the Strength attribute needed to use the item
reqdex - Defines the amount of the Dexterity attribute needed to use the item

durability - Defines the base durability amount that the item will spawn with.

nodurability - Boolean Field. If equals 1, then the item will not have durability. If equals
0, then the item will have durability.

level - Controls the base item level. This is used for determining when the item is
allowed to drop, such as making sure that the item level is not greater than the
monster’s level or the area level.
ShowLevel - Boolean Field. If equals 1, then display the item level next to the item
name. If equals 0, then ignore this.
levelreq - Controls the player level requirement for being able to use the item

cost - Defines the base gold cost of the item when being sold by an NPC. This can be
affected by item modifiers and the rarity of the item.
gamble cost - Defines the gambling gold cost of the item on the Gambling UI

code - Defines a unique 3 letter/number code for the item. This is used as an identifier
to reference the item.
namestr - String Key that is used for the base item name

magic lvl - Defines the magic level of the item, which can affect how magical item
modifiers that can appear on the item (See automagic.txt)
auto prefix - Automatically picks an item affix name from a designated “group” value
from the automagic.txt file, instead of using random prefixes. This is only used when the
item is Magical quality.

alternategfx - Uses a unique 3 letter/number code similar to the defined “code” fields to
determine what in-game graphics to display on the player character when the item is
equipped

normcode - Links to a “code” field to determine the normal version of the item
ubercode - Links to a “code” field to determine the Exceptional version of the item
ultracode - Links to a “code” field to determine the Elite version of the item

component - Determines the layer of player animation when the item is equipped. This
uses a code referenced from the Composit.txt file.

Code Description

0 Head

1 Torso

2 Legs

3 Right Arm

4 Left Arm

5 Right Hand

6 Left Hand

7 Shield

8 Special 1

9 Special 2

10 Special 3

11 Special 4

12 Special 5

13 Special 6

14 Special 7

15 Special 8

16 Do not display anything

invwidth & invheight - Defines the width and height of grid cells that the item occupies
in the player inventory

hasinv - Boolean Field. If equals 1, then the item will have its own inventory allowing for
the capability to socket gems, runes, or jewels. If equals 0, then the item cannot have
sockets.
gemsockets - Controls the maximum number of sockets allowed on this item. This is
limited by the item’s size based on the “invwidth” and “invheight” fields. This also
compares with the “MaxSock1”, “MaxSock25” and “MaxSock40” fields from the
ItemTypes.txt file.

gemapplytype - Determines which affect from a gem or rune will be applied when it is
socketed into this item (See gems.txt)

Code Description

0 Weapon

1 Armor or Helmet

2 Shield

flippyfile - Controls which DC6 file to use for displaying the item in the game world
when it is dropped on the ground (uses the file name as the input)
invfile - Controls which DC6 file to use for displaying the item graphics in the inventory
(uses the file name as the input)
uniqueinvfile - Controls which DC6 file to use for displaying the item graphics in the
inventory when it is a Unique quality item (uses the file name as the input)
setinvfile - Controls which DC6 file to use for displaying the item graphics in the
inventory when it is a Set quality item (uses the file name as the input)

useable - Boolean Field. If equals 1, then the item can be used with the right-click
mouse button command (this only works with specific belt items or quest items). If
equals 0, then ignore this.

stackable - Boolean Field. If equals 1, then the item will use a quantity field and handle
stacking functionality. This can depend on if the item type is throwable, is a type of
ammunition, or is some other kind of miscellaneous item. If equals 0, then the item
cannot be stacked.
minstack - Controls the minimum stack count or quantity that is allowed on the item.
This field depends on the “stackable” field being enabled.
maxstack - Controls the maximum stack count or quantity that is allowed on the item.
This field depends on the “stackable” field being enabled.

spawnstack - Controls the stack count or quantity that the item can spawn with. This
field depends on the “stackable” field being enabled.

Transmogrify - Boolean Field. If equals 1, then the item will use the transmogrify
function. If equals 0, then ignore this. This field depends on the “useable” field being
enabled.
TMogType - Links to a “code” field to determine which item is chosen to transmogrify
this item to.
TMogMin - Controls the minimum quantity that the transmogrify item will have. This
depends on what item was chosen in the “TMogType” field, and that the transmogrify
item has quantity.
TMogMax - Controls the minimum quantity that the transmogrify item will have. This
depends on what item was chosen in the “TMogType” field, and that the transmogrify
item has quantity.

type - Points to an Item Type defined in the ItemTypes.txt file, which controls how the
item functions
type2 - Points to a secondary Item Type defined in the ItemTypes.txt file, which controls
how the item functions. This is optional but can add more functionalities and possibilities
with the item.

dropsound - Points to a “Sound” field defined in the sounds.txt file. Used when the item
is dropped on the ground.
dropsfxframe - Defines which frame in the “flippyfile” animation to play the “dropsound”
sound when the item is dropped on the ground.
usesound - Points to a “Sound” field defined in the sounds.txt file. Used when the item
is moved in the inventory or used.

unique - Boolean Field. If equals 1, then the item can only spawn as a Unique quality
type. If equals 0, then the item can spawn as other quality types.

transparent - Boolean Field. If equals 1, then the item will be drawn transparent on the
player model (similar to ethereal models). If equals 0, then the item will appear solid on
the player model.

transtbl - Controls what type of transparency to use, based on the “transparent” field
being enabled.

Code Description

0 Transparency at 25%

1 Transparency at 50%

2 Transparency at 75%

3 Black Alpha Transparency

4 White Alpha Transparency

5 No Transparency

6 Dark Transparency (Unused)

7 Highlight Transparency (Used when mousing over the unit)

8 Blended

lightradius - Controls the value of the light radius that this item can apply on the
monster. This only affects monsters with this item equipped, not other types of units.
This is ignored if the item’s component on the monster is “lit”, “med”, or “hvy”.

belt - Controls which belt type to use for belt items only. This field determines what
index entry in the belts.txt file to use.

quest - Controls what quest class is tied to the item which can enable certain item
functionalities for a specific quest. Any value greater than 0 will also mean the item is
flagged as a quest item, which can affect how it is displayed in tooltips, how it is traded
with other players, its item rarity, and how it cannot be sold to an NPC. If equals 0, then
the item will not be flagged as a quest item.

Code Description

0 Not a quest item

1 Act 1 Prologue

2 Den of Evil

3 Sisters’ Burial Grounds

4 Tools of the Trade

5 The Search for Cain

6 The Forgotten Tower

7 Sisters to the Slaughter

8 Act 2 Prologue

9 Radament’s Lair

10 The Horadric Staff

11 The Tainted Sun

12 The Arcane Sanctuary

13 The Summoner

14 The Seven Tombs

15 Act 2 Traversed

16 Lam Esen’s Tome

17 Khalim’s Will

18 Blade of the Old Religion

19 The Golden Bird

20 The Blackened Temple

21 The Guardian

22 Act 4 Prologue

23 The Fallen Angel

24 Terror’s End

25 The Hellforge

26 Rogue Warning

27 Guard in Town Warning

28 Guard in Desert Warning

29 Dark Wanderer Seen

30 Angel Warning

31
Respec from Akara Complete
Act 5 Prologue

32 Siege on Harrogath

33 Rescue on Mount Arreat

34 Prison of Ice

35 Betrayal of Harrogath

36 Rite of Passage

37 Eve of Destruction

questdiffcheck - Boolean Field. If equals 1 and the “quest” field is enabled, then the
game will check the current difficulty setting and will tie that difficulty setting to the quest
item. This means that the player can have more than 1 of the same quest item as long
each they are obtained per difficulty mode (Normal / Nightmare / Hell). If equals 0 and
the “quest” field is enabled, then the player can only have 1 count of the quest item in
the inventory, regardless of difficulty.

missiletype - Points to the “Id” field from the Missiles.txt file, which determines what
type of missile is used when using the throwing weapons
durwarning - Controls the threshold value for durability to display the low durability
warning UI. This is only used if the item has durability.
qntwarning - Controls the threshold value for quantity to display the low quantity
warning UI. This is only used if the item has stacks.

mindam - The minimum physical damage provided by the item
maxdam - The maximum physical damage provided by the item

StrBonus - The percentage multiplier that gets multiplied the player’s current Strength
attribute value to modify the bonus damage percent from the equipped item. If this
equals 1, then default the value to 100.
DexBonus - The percentage multiplier that gets multiplied the player’s current Dexterity
attribute value to modify the bonus damage percent from the equipped item. If this
equals 1, then default the value to 100.

gemoffset - Determines the starting index offset for reading the gems.txt file when
determining what effects gems or runes will have the item based on the “gemapplytype”
field. For example, if this value equals 9, then the game will start with index 9 (“Chipped
Emerald”) and ignore the previously defined gems in the gems.txt file, which can mean
that those ignored gems will not apply modifiers when socketed into the item.
bitfield1 - Controls different flags that can affect the item. Uses an integer value to
check against different bit fields by using the “&” operator. For example, if the value
equals 5 (binary = 101) then that returns true for both the 4 (binary = 100) and 1 (binary
= 1) bit field values.

Bit Field Value Binary Value Description

1 1 Allow the item to be capable of having Magic quality

2 10 The item is classified as metal

4 100 The item is classified as a spellcaster item (currently does nothing)

8 1000 The item is classified as a skill based item (currently does nothing)

The following fields are separated per NPC in each Act:
[NPC]Min - Minimum amount of this item type in Normal rarity that the NPC can sell at
once
[NPC]Max - Maximum amount of this item type in Normal rarity that the NPC can sell at
once. This must be equal to or greater than the minimum amount.
[NPC]MagicMin - Minimum amount of this item type in Magical rarity that the NPC can
sell at once
[NPC]MagicMax - Maximum amount of this item type in Magical rarity that the NPC can
sell at once. This must be equal to or greater than the minimum amount.
[NPC]MagicLvl - Maximum magic level allowed for this item type in Magical rarity

Where [NPC] is one of the following:

Charsi

Gheed

Akara

Fara

Lysander

Drognan

Hratli

Alkor

Ormus

Elzix

Asheara

Cain

Halbu

Jamella

Larzuk

Malah

Anya

Transform - Controls the color palette change of the item for the character model
graphics

InvTrans - Controls the color palette change of the item for the inventory graphics

Code Color

0 No color change

1 Grey

2 Grey 2

3 Gold

4 Brown

5 Grey Brown

6 Inventory Grey

7 Inventory Grey 2

8 Inventory Grey
Brown

SkipName - Boolean Field. If equals 1 and the item is Unique rarity, then skip adding
the item’s base name in its title. If equals 0, then ignore this.

NightmareUpgrade - Links to another item’s “code” field. Used to determine which item
will replace this item when being generated in the NPC’s store while the game is playing
in Nightmare difficulty. If this field’s code equals “xxx”, then this item will not change in
this difficulty.
HellUpgrade - Links to another item’s “code” field. Used to determine which item will
replace this item when being generated in the NPC’s store while the game is playing in
Hell difficulty. If this field’s code equals “xxx”, then this item will not change in this
difficulty.

Nameable - Boolean Field. If equals 1, then the item’s name can be personalized by
Anya for the Act 5 Betrayal of Harrogath quest reward. If equals 0, then the item cannot
be used for the personalized name reward.
PermStoreItem - Boolean Field. If equals 1, then this item will always appear on the
NPC’s store. If equals 0, then the item will randomly appear on the NPC’s store when
appropriate.
worldevent - Boolean Field. If equals 1, then this item can be used to trigger the Uber
Diablo world event when it is sold to an NPC. If equals 0, then ignore this.

The following fields are exclusive to the misc.txt file because these fields only used with
Miscellaneous type items:

autobelt - Boolean Field. If equals 1, then the item will automatically be placed is a free
slot in the belt when picked up, if possible. If equals 0, then ignore this.

bettergem - Links to another item’s “code” field. Used by the function 18 in the “Code”
field from the shrines.txt file to know what a selected gem’s upgrade will be when the
player uses the gem shrine.

multibuy - Boolean Field. If equals 1, then use the multi-buy transaction function when
holding the shift key and buying this item from an NPC store. This multi-buy function will
automatically purchase enough of the item to fill up to a full quantity stack or fill the
available belt slots if the item is has the “autobelt” field enabled. If equals 0, then ignore
this.

spellicon - Determines the icon asset for displaying the item’s spell. This uses an ID
value based on the global skillicon file. If this value equals -1, then the item’s spell will
not display an icon. Used as a parameter for a “pspell” function.

pspell - Uses an ID value to select a spell function when the item is used. This depends
on the item type.

Code Parameters Description

0 Do nothing

1 spellicon SkillItemIdentify - Sets the spell icon. Identifies an item.

2 SkillItemTownPortal - The player creates a town portal

3 state
stat1, calc1
stat2, calc2
stat3, calc3
len

SkillItemHealPotion
1. Applies a “state” on the player that is controlled by the

“len” field
2. This function requires that the stat parameters be either

“hitpoints”, “hpregen”, “mana”, or “manarecovery”
3. Calculates a flat amount of these stats to restore to the

player, based on the class and Vitality/Energy attribute
for Life/Mana stats

4 state
stat1, calc1
stat2, calc2
stat3, calc3
len

SkillItemHealPotion2
1. Applies a “state” on the player that is controlled by the

“len” field
2. This function requires that the stat parameters be either

“hitpoints”, “hpregen”, “mana”, or “manarecovery”
3. Calculates a flat amount of these stats to restore to the

player

5 stat1, calc1
stat2, calc2
stat3, calc3

SkillItemHealPotion3 - Adds a percentage of the stat’s
“maxstat” value (see ItemStatCost.txt) to the current stat. This
percentage is determined by the related calculated value.

6 state
cstate1
cstate2
len

SkillItemPotionAntidote - Clears the “cstate1” and “cstate2”
states on the user and applies the “state” state with its
duration controlled by the “len” field.

7 SkillItemTransmogrify - Opens the Horadric Cube UI

8 SkillItemElixir - Get a stat from item’s mod class and set it to
the it’s “value” stat

9 state
stat1, calc1
stat2, calc2
stat3, calc3
len

SkillItemHerb
1. Applies a “state” on the player that is controlled by the

“len” field
2. Calculates a flat amount of the stats to set on the player
3. Has a special case where if the stat equals

“staminarecoverybonus” then also set the current
“stamina” stat to be equals to the “maxstamina” stat

10 SkillItemSkill - Cast a level 1 Sorceress Fire Ball skill at a
targeted enemy or targeted location

11 SkillItemSkillXY - Cast a level 1 Sorceress Fire Ball skill at a
targeted location

state - Links to a “state” field defined in the states.txt file. It signifies what state will be
applied to the player when the item is used. Used as a parameter for a “pspell” function.
cstate1 & cstate2 - Links to a “state” field defined in the states.txt file. It signifies what
state will be removed from the player when the item is used. Used as a parameter for a
“pspell” function.

len - Calculates the frame length of a state. Used as a parameter for a “pspell” function.
stat1 (to stat3) - Controls the stat modifier when the item is used (Uses the “code” field
from Properties.txt). Used as a parameter for a “pspell” function.
calc1 (to calc3) - Calculates the value of the relative “stat#” field. Used as a parameter
for a “pspell” function.

spelldesc - Uses an ID value to select a function to format a string and add this string
to the item’s tooltip

Code Parameters Description

0 (or empty) Do nothing

1 spelldescstr
spelldescstr2

1. Add the “spelldescstr” string to the item tooltip
2. If “spelldescstr2” is not null, then use this string

instead of “spelldescstr” string when playing in
controller mode

2 spelldescstr
spelldesccalc
stat1

1. Evaluate the “spelldesccalc” field
2. If the “stat1” value equals “hitpoints” or “hpregen”

then adjust the calculated value based on the
relative “HealthPotionPercent” value from
charstats.txt file.

3. If the “stat1” value equals “mana” or
“manarecovery” then adjust the calculated value
based on the relative “ManaPotionPercent” value
from charstats.txt file.

4. Insert the calculated value into the “spelldescstr”
string and add the string to the item tooltip

3 spelldescstr
spelldesccalc

1. Evaluate the “spelldesccalc” field
2. Add the “spelldescstr” string to the item tooltip
3. Append a space string and the calculated value

after the “spelldescstr” string to the item tooltip

4 spelldescstr
spelldesccalc

1. Evaluate the “spelldesccalc” field
2. Insert the calculated value into the “spelldescstr”

string and add the string to the item tooltip

spelldescstr & spelldescstr2 - String Key. Used as a parameter for the “spelldesc”
function.
spelldesccalc - Calculates the numeric equation. Used as a parameter for the
“spelldesc” function.
spelldesccolor - Uses a code number to change the color of the string used in the
“spelldesc” function.

Code Description

0 White (R=255, G=255, B=255)

1 Red (R=255, G=77, B=77)

2 Green (R=0, G=255, B=0)

3 Blue (R=105, G=105, B=255)

4 Light Gold (R=199, G=179, B=119)

5 Grey (R=105, G=105, B=105)

6 Black (R=0, G=0, B=0)

7 Dark Gold (R=208, G=194, B=125)

8 Orange (R=255, G=168, B=0)

9 Yellow (R=255, G=255, B=100)

10 Dark Green (R=0, G=128, B=0)

11 Purple (R=174, G=0, B=255)

12 Medium Green (R=0, G=200, B=0)

monequip.txt

Overview

This file controls how a monster may be created with specific type of inventory
equipment items
These equipment items are randomly generated on the monster, based on the specified
parameters in this file
This data relies on the “inventory” field being enabled for the listed monster, found in the
monstats.txt file

Data Fields

monster - Defines the monster that should be equipped. Points to the matching “Id”
value in the monstats.txt file. If the monster has multiple defined equipment possibilities,
then they should always be grouped together. The game will go through the list in order
to match what is best to use for the monster.
oninit - Defines if the monster equipment is added on initialization during the monster’s
creation, depending how the monster is spawned. Monsters created by a skill have this
value set to 0. Monsters created by a level have this value set to 1.
level - Defines the level requirement for the monster in order to gain this equipment.
The game will prefer the highest level allowed, so the order of these equipment should
be from highest level to lowest level.

item1 (to item3) - Item that the be equipped on the monster (Uses ID pointer from
Weapons.txt, Armor.txt or Misc.txt)

loc1 (to loc3) - Specifies the inventory slot where the item will be equipped. Once an
item is equipped on that body location, then the game will skip any duplicate calls to
equipping the same body location. This is another reason why the equipment should be
ordered from highest level to lowest level.

Code Description

(empty) None

head Head

neck Neck

tors Torso

rarm Right Arm

larm Left Arm

rrin Right Ring

lrin Left Ring

belt Belt

feet Feet

glov Gloves

mod1 (to mod3) - Controls the quality level of the related item

Item Quality Code Description

0 Any Quality (Used for a random quality)

1 Low Quality (Ex: "Crude")

2 Normal Quality (Default value if the value is empty)

3 High Quality (Superior)

4 Magic Quality (Uses Magic Prefixes and Suffixes)

5 Set Item

6 Rare Quality

7 Unique (Predetermined stats)

MonLvl.txt

Overview

This file controls how monster statistics increase per level based on the current game
type and difficulty

The “(N)” text in field names signifies to use that specific value for games in Nightmare
difficulty
The “(H)” text in field names signifies to use that specific value for games in Hell
difficulty

This file is used by monstats.txt

Data Fields

Level - An integer value to determine how to scale the monster’s statistics when at a
specific level

The following are used for the following game type: Non-Ladder Battle.net / Singleplayer
/ Open Battle.net / TCP
AC & AC(N) & AC(H) - Percentage multiplier for increasing the Monster’s Defense
(multiplies with the “AC” field in monstats.txt)

TH & TH(N) & TH(H) - Percentage multiplier for increasing the Monster’s Attack Rating
(multiplies with the “A1TH” and “A2TH” fields in monstats.txt)
HP & HP(N) & HP(H) - Percentage multiplier for increasing the Monster’s Life
(multiplies with the “MinHP” and “MaxHP” fields in monstats.txt)
DM & DM(N) & DM(H) - Percentage multiplier for increasing the Monster’s Damage
(multiplies with the “A1MinD”, “A1MaxD”, “A2MinD”, “A2MaxD”, “El1MinD”, “El1MaxD”,
“El2MinD”, “El2MaxD”, “El3MinD”, and “El3MaxD” fields in monstats.txt)
XP & XP(N) & XP(H) - Percentage multiplier for increasing the Experience provided to
the player when killing the Monster (multiplies with the “Exp” fields in monstats.txt)

The following are used only for the Ladder Battle.net game type
L-AC & L-AC(N) & L-AC(H) - Percentage multiplier for increasing the Monster’s
Defense (multiplies with the “AC” field in monstats.txt)
L-TH & L-TH(N) & L-TH(H) - Percentage multiplier for increasing the Monster’s Life
(multiplies with the “A1TH” and “A2TH” fields in monstats.txt)
L-HP & L-HP(N) & L-HP(H) - Percentage multiplier for increasing the Monster’s Life
(multiplies with the “MinHP” and “MaxHP” fields in monstats.txt)
L-DM & L-DM(N) & L-DM(H) - Percentage multiplier for increasing the Monster’s
Damage (multiplies with the “A1MinD”, “A1MaxD”, “A2MinD”, “A2MaxD”, “El1MinD”,
“El1MaxD”, “El2MinD”, “El2MaxD”, “El3MinD”, and “El3MaxD” fields in monstats.txt)
L-XP & L-XP(N) & L-XP(H) - Percentage multiplier for increasing the Experience
provided to the player when killing the Monster (multiplies with the “Exp” fields in
monstats.txt)

MonPreset.txt

Overview

This file controls which monsters are preloaded in a preset, based on the Act number

Data Fields

Act - Defines the Act number used for each Monster Preset. Uses values between 1 to
5.
Place - Defines either a Super Unique monster from superuniques.txt, or a monster
from monstats.txt, or a place from monplace.txt. This defines the Monster Preset which
is used for preloading, such as during level transitions

MonProp.txt

Overview

This file controls special properties that can be added to a monster, based on the game
difficulty

The “(N)” text in field names signifies to use that specific value for games in Nightmare
difficulty
The “(H)” text in field names signifies to use that specific value for games in Hell
difficulty

This file is used by the monstats.txt file

Data Fields

Id - Defines the monster that should gain the Property. Points to the matching “Id” value
in the monstats.txt file.

prop1 (to prop6) - Defines with Property to apply to the monster (Uses the “code field
from Properties.txt)
chance1 (to chance6) - The percent chance that the related property (prop#) will be
assigned. If this value equals 0, then the Property will always be applied.
par1 (to par6) - The “parameter” value associated with the related property (prop#).
Usage depends on the property function (See the “func” field on Properties.txt)
min1 (to min6) - The “min” value to assign to the related property (prop#). Usage
depends on the property function (See the “func” field on Properties.txt)
max1 (to max6) - The “max” value to assign to the related property (prop#). Usage
depends on the property function (See the “func” field on Properties.txt)

monseq.txt

Overview

This file controls the sequence table used for specifying events during certain animation
frames, such as when using skills.
A sequence is divided into multiple lines in this file to define each frame in the animation
and to determine which event to use during a specific frame.

Data Fields

sequence - Establishes the Monster Sequence index. An entire monster sequence can
be composed of multiple sequence lines, which means that each line needs to have
matching “sequence” fields and must be in contiguous order.
mode - Defines which monster mode animation to use for the sequence

Code Description

DT Death

NU Neutral

WL Walk

GH Get Hit

A1 Attack 1

A2 Attack 2

BL Block

SC Cast

S1 Skill 1

S2 Skill 2

S3 Skill 3

S4 Skill 4

DD Dead

GH Knockback

xx Sequence

RN Run

frame - The in-game frame number for the animation. For the first line in the sequence,
this value will establish where the starting frame for the animation. These values should
be in contiguous order for the sequence.

dir - Defines the numeric animation direction that the frame use. Most animations have
between 8 to 64 maximum directions.

event - Defines what type of event will be used when the frame triggers

Code Description

0 No event, do nothing

1 Do Melee attack

2 Do Missile attack

3 Play a sound

4 Use a Skill

monstats.txt

Overview

This file controls the main functionalities and statistics for every monster in the game.
This includes enemy monsters, pets, and NPC units.

This file is connected to the monstats2.txt file, so additional functionalities can be found
in that file. This means that this file’s number and order of entries should be identical
with the monstats2.txt file.

The “(N)” text in field names signifies to use that specific value for games in Nightmare
difficulty

The “(H)” text in field names signifies to use that specific value for games in Hell
difficulty

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Id - Controls the unique name ID to define the monster. This must match the same
value in the monstats2.txt file.
BaseId - Points to the “Id” of another monster to define the monster’s base type. This is
to create groups of monsters which are considered the same type.
NextInClass - Points to the “Id” of another monster to signify the next monster in the
group of this monster’s type. This is to continue the groups of monsters which are
considered the same type. The order should be contiguous.

TransLvl - Defines the color transform level to use for this monster, which affects what
color palette that the monster will use

Code Description

0 Cold

1 Poison

2 Level 0

3 Level 1

4 Level 2

5 Level 3

6 Level 4

7 Level Miscellaneous

NameStr - String Key. Used to define the monster’s name, such as in the Life bar UI
when it is being targeted.
MonStatsEx - Controls a pointer to the “Id” of a monster to define which entry to use in
the monstats2.txt file. This should always match the same “Id” value for the monster in
this file.
MonProp - Points to the “Id” field from the MonProp.txt file. Used to add special
modifiers to the monster.
MonType - Points to the “type” field from the MonType.txt file. Used to handle the
monster’s classification.
AI - Points to a type of AI script to use for the monster (See monai.txt).
DescStr - String Key. Used to add a string to appear as an additional description below
the Life bar UI when the monster is being targeted.
Code - Controls the token used for choosing the proper cells to display the monster’s
graphics
enabled - Boolean Field. If equals 1, then this monster is allowed to spawn in the game.
If equals 0, then this monster will never spawn in the game.
rangedtype - Boolean Field. If equals 1, then the monster will be classified as a ranged
type. If equals 0, then the monster will be classified as a melee type.

placespawn - Boolean Field. If equals 1, then this monster will be treated as a
spawner, so monsters that spawn can be initially placed within this monster. If equals 0,
then ignore this.
spawn - Points to the “Id” of another monster to control what kind of monster is
spawned from this monster. This is only used if the “placespawn” field is enabled.
spawnx & spawny - Controls the X & Y offsets for where another monster is displaced
when being spawned by this monster.

spawnmode - Defines the animation mode that the spawned monsters will be initiated
with

Token Description

DT Death / Reset

NU Neutral

WL Walk

GH Get Hit

A1 Attack 1

A2 Attack 2

BL Block

SC Cast

S1 Skill 1

S2 Skill 2

S3 Skill 3

S4 Skill 4

DD Dead

GH Knockback

xx Sequence

RN Run

minion1 & minion2 - Points to the “Id” of another monster to control what kind of
monster is spawned with this monster when it is spawned, like a monster pack. The
“minion1” field is also used for spawning a monster when this monster is killed while it
has the “SplEndDeath” field enabled.
SetBoss - Boolean Field. If equals 1, then set the monster AI to use the Boss AI type,
which can affect the monster’s behaviors. If equals 0, then ignore this.
BossXfer - Boolean Field. If equals 1, then the monster’s AI will transfer its boss
recognition to another monster, which can affect the minion monster behaviors after this
boss is killed. If equals 0, then ignore no boss AI will transfer and minion monsters will
behave differently after the boss is killed. This field relies on the “SetBoss” field being
enabled.
PartyMin - The minimum number of minions that can spawn with this monster. Uses the
“minion1” and “minion2” fields. The actual number is a random value chosen between
the “PartyMin” and “PartyMax” field values.
PartyMax - The maximum number of minions that can spawn with this monster. Uses
the “minion1” and “minion2” fields. The actual number is a random value chosen
between the “PartyMin” and “PartyMax” field values.

MinGrp - The minimum number of duplicates of this monster that can spawn together.
The actual number is a random value chosen between the “MinGrp” and “MaxGrp” field
values.
MaxGrp - The maximum number of duplicates of this monster that can spawn together.
The actual number is a random value chosen between the “MinGrp” and “MaxGrp” field
values.
sparsePopulate - If this value is greater than 0, then it controls the percent chance that
this monster does not spawn, and another monster will spawn in its place. (Out of 100)

Velocity - Determines the movement velocity of the monster, which can be the
monster’s baseline walk speed.
Run - Determines the run speed of the monster as opposed to walk speed. This is only
used if the monster has a Run mode.
Rarity - Modifies the chance that this monster will be chosen to spawn in the area level.
The higher the value is, then the more likely this monster will be chosen. This value acts
as a numerator and a denominator. All “Rarity” values of possible monsters get summed
together to give a total denominator, used for the random roll. For example, if there are
3 possible monsters that can spawn, and their “Rarity” values are 1, 2, 2, then their
chances to be chosen are 1/5, 2/5, and 2/5 respectively. If this value equals 0, then this
monster is never randomly selected to spawn in an area level.
Level - Determines the monster’s level. This value for Nightmare and Hell difficulty can
be overridden by the area level’s “MonLvl#” or “MonLvl#Ex” value (See Levels.txt),
unless the monster’s “boss” and “noRatio” fields are enabled.

MonSound - Points to the “Id” field of a monster sound from the monsounds.txt file.
This is used to control the monsters assigned sounds, when the monster is spawned as
a Normal monster.
UMonSound - Points to the “Id” field of a monster sound from the monsounds.txt file.
This is used to control the monsters assigned sounds, when the monster is spawned as
a Unique or Champion monster.

threat - Controls the AI threat value of the monster which can affect the targeting
priorities of enemy Ais for this monster. The higher this value is, then the more likely
that enemy AI will target this monster.
aidel - Controls the delay in frame length for how often the monster’s AI will update its
commands. A lower delay means that the monster will perform commands more often
without as long of a pause in between.
aidist - Controls the maximum distance (measured in tiles) between the monster and an
enemy until the monster’s AI becomes aggressive. If equals 0, then default to 35.
aip1 (to aip8) - Defines numeric parameters used to control various functions of the
monster’s AI. These fields depend on which AI script is being used (See monai.txt, and
the “AI” field in monstats.txt)

MissA1 & MissA2 - Points to the “Missile” field from Missiles.txt to determine which
missile to use when the monster is in Attack 1 & Attack 2 mode

MissS1 (to MissS4) - Points to the “Missile” field from Missiles.txt to determine which
missile to use when the monster is in Skill 1 (to Skill 4) mode
MissC - Points to the “Missile” field from Missiles.txt to determine which missile to use
when the monster is in Cast mode
MissSQ - Points to the “Missile” field from Missiles.txt to determine which missile to use
when the monster is in Sequence mode

Align - Controls the monster’s alignment, which determines if the monster will be an
enemy, ally, or neutral party to the player.

Code Description

0 Evil Alignment - The monster will attack the player

1 Good Alignment - The monster will fight with the player and will be in the
player’s party

2 Neutral Alignment - The monster will not attack the player and will not be in
the player’s party

isSpawn - Boolean Field. If equals 1, then the monster is allowed to spawn in an area
level. If equals 0, then the monster will not be spawned automatically in an area level.
isMelee - Boolean Field. If equals 1, then the monster is classified as a melee only type,
which can affect its AI behaviors and what monster modifiers are allowed on the
monster. If equals 0, then ignore this.
npc - Boolean Field. If equals 1, then the monster is classified as an NPC (Non-
Playable Character), which can affect its AI behaviors and how the player treats this
monster. If equals 0, then ignore this.
interact - Boolean Field. If equals 1, then the monster is interactable, meaning that the
player can click on the monster to perform an interact command instead of attacking. If
equals 0, then ignore this.
inventory - Boolean Field. If equals 1, then monster will have an inventory with
randomly generated items, such as an NPC with shop items (if the “interact” field is
enabled) or a summoned unit with random equipped items (also see monequip.txt). If
equals 0, then ignore this.
inTown - Boolean Field. If equals 1, then the monster is allowed to be in town. If equals
0, then the monster is not allowed to be in town, which can affect or disable their AI or
collision from entering towns.
lUndead - Boolean Field. If equals 1, then the monster is treated as a Low Undead,
meaning that the monster is classified as an Undead type and can be resurrected by
certain AI. If equals 0, then ignore this.
hUndead - Boolean Field. If equals 1, then the monster is treated as a High Undead,
meaning that the monster is classified as an Undead type but cannot be resurrected by
certain AI. If equals 0, then ignore this.
demon - Boolean Field. If equals 1, then the monster is classified as a Demon type. If
equals 0, then ignore this.
flying - Boolean Field. If equals 1, then the monster is flagged as a flying type, which
can affect its collision with the area level and how it is spawned. If equals 0, then ignore
this.

opendoors - Boolean Field. If equals 1, then the monster will use its AI to open doors if
necessary. If equals 0, then the monster cannot open doors and will treat doors as
another type of collision.
boss - Boolean Field. If equals 1, then the monster is classified as a Boss type, which
can affect boss related AI and functions. If equals 0, then ignore this.
primeevil - Boolean Field. If equals 1, then the monster is classified as a Prime Evil
type, or an Act End boss, which can affect various skills, AI, and damage related
functions. If equals 0, then ignore this.
killable - Boolean Field. If equals 1, then the monster can be killed, damage, and be put
in a Death or Dead mode. If equals 0, then the monster cannot be damaged or killed.
switchai - Boolean Field. If equals 1, then monster’s AI can switched, such as by the
Assassin’s Mind Blast ability. If equals 0, then the monster AI cannot be switched.
noAura - Boolean Field. If equals 1, then the monster cannot be affected by friendly
auras. If equals 0, then the monster can be affected by friendly auras.
nomultishot - Boolean Field. If equals 1, then the monster is not allowed to spawn with
the Multi-Shot unique monster modifier (See monumod.txt). If equals 0, then ignore this.
neverCount - Boolean Field. If equals 1, then the monster is not counted on the list of
the active monsters in the area, which affects spawning and saving functions. If equals
0, then the monster will be accounted for, and can be part of the active or inactive list
functions.
petIgnore - Boolean Field. If equals 1, then pet AI scripts will ignore this monster (See
monai.txt). If equals 0, then pet AI will attack this monster.
deathDmg - Boolean Field. If equals 1, then the monster will explode on death. This
has special cases for the “bonefetish1” and “siegebeast1” monster classes, otherwise
the monster will use a general death damage function to damage nearby units based on
the monster’s health percentage. If equals 0, then ignore this.
genericSpawn - Boolean Field. If equals 1, the monster is flagged as a possible
selection for the AI generic spawner function. There are defaults for using the If equals
0, then ignore this.
zoo - Boolean Field. If equals 1, then the monster will be flagged as a zoo type monster,
which will give it the AI zoo behavior. If equals 0, then ignore this.

SendSkills - Determines which of the monster’s skill’s level should be sent to the client.
Uses a byte value, where the code tests each bit to determine which of the monster’s
skills to check.
Skill1 (to Skill8) - Points to a skill from the “skill” field in the skills.txt file. This gives the
monster the skill to use (requires “Sk#mode”)

Sk1mode (to Sk8mode) - Determines the monster’s animation mode when using the
related skill. Outside of the standard animation mode inputs, the field can also point to a
“sequence” defined in the monseq.txt file, which handle a specific set of frames to place
a sequence animation.

Token Description

DT Death / Reset

NU Neutral

WL Walk

GH Get Hit

A1 Attack 1

A2 Attack 2

BL Block

SC Cast

S1 Skill 1

S2 Skill 2

S3 Skill 3

S4 Skill 4

DD Dead

GH Knockback

RN Run

Sk1lvl (to Sk8lvl) - Controls the base skill level of the related skill on the monster

Drain - Controls the monster’s overall Life and Mana steal percentage. This can also be
affected by the “LifeStealDivisor” and “ManaStealDivisor” fields from the
difficultylevels.txt file. If equals 0, then the monster will not have Life or Mana steal.
coldeffect - Sets the percentage change in movement speed and attack rate when the
monster if chilled by a cold effect. If this equals 0, then the monster will be immune to
the cold effect.

ResDm - Sets the monster’s Physical Damage Resistance stat
ResMa - Sets the monster’s Magic Resistance stat
ResFi - Sets the monster’s Fire Resistance stat
ResLi - Sets the monster’s Lightning Resistance stat
ResCo - Sets the monster’s Cold Resistance stat
ResPo - Sets the monster’s Poison Resistance stat

DamageRegen - Controls the monster’s Life regeneration per frame. This is calculated
based on the monster’s maximum life: Regeneration Rate = (Life * “DamageRegen”) /
16
SkillDamage - Points to a skill from the “skill” field in the skills.txt file. This changes the
monster’s min physical damage, max physical damage, and Attack Rating to be based
off the values from the linked skill and its current level from the monster’s owner (usually
the player who summoned the monster).

noRatio - Boolean Field. If equals 1, then use this file’s fields to determine the
monster’s baseline stats (“minHP”, “maxHP”, “AC”, “Exp”, “A1MinD”, “A1MaxD”, “A1TH”,
“A2MinD”, “A2MaxD”, “A2TH”, “S1MinD”, “S1MaxD”, “S1TH”). If equals 0, then use the
MonLvl.txt file to determine the monster’s baseline stats.
NoShldBlock - Boolean Field. If equals 1, then the monster can block without a shield
(the block chance stat will take effect even without a shield equipped). If equals 0, then
ignore this.
ToBlock - The monster’s percent chance to block an attack
Crit - The percent chance for the monster to score a critical hit when attacking an
enemy, which causes the attack to deal double damage
minHP - The monster’s minimum amount of Life when spawned

maxHP - The monster’s maximum amount of Life when spawned
AC - The monster’s Defense value
Exp - The amount of Experience that is rewarded to the player when the monster is
killed
A1MinD - The minimum damage dealt by the monster when it is using the Attack 1 (A1)
animation mode
A1MaxD - The maximum damage dealt by the monster when it is using the Attack 1
(A1) animation mode
A1TH - The monster’s Attack Rating when it is using the Attack 1 (A1) animation mode
A2MinD - The minimum damage dealt by the monster when it is using the Attack 2 (A2)
animation mode
A2MaxD - The maximum damage dealt by the monster when it is using the Attack 2
(A2) animation mode
A2TH - The monster’s Attack Rating when it is using the Attack 2 (A2) animation mode
S1MinD - The minimum damage dealt by the monster when it is using the Skill 1 (S1)
animation mode
S1MaxD - The maximum damage dealt by the monster when it is using the Skill 1 (S1)
animation mode
S1TH - The monster’s Attack Rating when it is using the Skill 1 (S1) animation mode

El1Mode (to El3Mode) - Determines which animation mode will trigger an additional
elemental damage type when used

Token Description

DT Death / Reset

NU Neutral

WL Walk

GH Get Hit

A1 Attack 1

A2 Attack 2

BL Block

SC Cast

S1 Skill 1

S2 Skill 2

S3 Skill 3

S4 Skill 4

DD Dead

GH Knockback

xx Sequence

RN Run

El1Type (to El3Type) - Defines the type of elemental damage. This field is used when
El#Mode is not null.

Code Description

fire Fire

ltng Lightning

mag Magic

cold Cold

pois Poison

life Life Drain

mana Mana Drain

stam Stamina Drain

stun Stun

rand Randomly select between Fire, Lightning, Magic, Cold, or Poison
If the related “El#Dur” field equals 0, then default the value to 25

burn Burning

frze Freeze

El1Pct (to El3Pct) - Controls the random percent chance (out of 100) that the monster
will append the element damage to the attack. This field is used when El#Mode is not
null.
El1MinD (to El3MinD) - The minimum element damage applied to the attack. This field
is used when El#Mode is not null.
El1MaxD (to El3MaxD) - The maximum element damage applied to the attack. This
field is used when El#Mode is not null.
El1Dur (to El3Dur) - Controls the duration of the related element mode in frame lengths
(25 Frames = 1 Second). This is only applicable for the Cold, Poison, Stun, Burning,
Freeze elements. There are special cases when evaluating the elements, where Poison
min and max damage are multiplied by 10, and Poison duration is multiplied by 2. This
field is used when El#Mode is not null.

TreasureClass1 (to TreasureClass4) - Defines which Treasure Class is used by the
monster when it is killed. Points to the “Treasure Class” field from the
TreasureClassEx.txt file. The “TreasureClass1” field is used for normal monster types.
The “TreasureClass2” field is used for Champion monster types. The “TreasureClass3”
field is used for Unique monster types. The “TreasureClass4” field is used for special
Quest related monster drops (See “TCQuestId” and “TCQuestCP”).

TCQuestId - Checks to see if the player has does not have a quest flag progress. If not,
then use the “TreasureClass4” field, based on the game’s current difficulty.

Code Quest Progress

0 Act 1 Prologue Seen

1 Den of Evil Completed

2 Sisters’ Burial Grounds Completed

3 Tools of the Trade Completed

4 The Search for Cain Completed

5 The Forgotten Tower Completed

6 Sisters to the Slaughter Completed

7 Act 1 Traversed

8 Act 2 Prologue Seen

9 Radament’s Lair Completed

10 The Horadric Staff Completed

11 Tainted Sun Completed

12 Arcane Sanctuary Completed

13 The Summoner Completed

14 The Seven Tombs Completed

15 Act 2 Traversed

16 Act 3 Prologue Seen

17 Lam Esen's Tome Completed

18 Khalim's Will Completed

19 Blade of the Old Religion Completed

20 The Golden Bird Completed

21 The Blackened Temple Completed

22 The Guardian Completed

23 Act 3 Traversed

24 Act 4 Prologue Seen

25 The Fallen Angel Completed

26 Terror's End Completed

27 Hell's Forge Completed

28 Act 4 Traversed

29 Rogue Warning Complete

30 Guard in Town Warning Complete

31 Guard in Desert Warning Complete

32 Dark Wanderer Seen

33 Angel Warning Complete

34 Act 5 Prologue Seen

35 Siege on Harrogath Completed

36 Rescue on Mount Arreat Completed

37 Prison of Ice Completed

38 Betrayal of Harrogath Completed

39 Rite of Passage Completed

40 Eve of Destruction Completed

41 Respecialization from Akara is Completed

TCQuestCP - Controls which Quest Checkpoint, or current progress within a quest
(based on the “TCQuestId” value), is needed to use the “TreasureClass4” field, based
on the game’s current difficulty

Code Description

0 History Success

1 History Earned Reward

2 Checkpoint 1

3 Checkpoint 2

4 Checkpoint 3

5 Checkpoint 4

6 Checkpoint 5

7 Checkpoint 6

8 Checkpoint 7

9 Checkpoint 8

10 Checkpoint 9

11 Checkpoint 10

12 Complete Quest Log

13 Current Game Success

14 Current Game Failure

15 Previous Game

SplEndDeath - Controls a special case death handler for the monster that is ran on the
server side

Code Description

null Do nothing

1 Spawn the monster type from the “minion1” field after this monster dies

2 Kill the source unit that is related to this monster. Typically this is a
mount type unit that the monster is riding when it dies

SplGetModeChart - Boolean Field. If equals 1, then check special case handlers of
certain monsters with specific “BaseId” fields while they are using certain a mode and
perform a function. If equals 0, then ignore this.

Index “BaseId” Description

243
333
705

“diablo”
“diablo clone”
“uberdiablo”

If current mode equals Skill 3 (S3) or Skill 4 (S4),
then do a generic attack function

403 “trappedsoul1” If current mode equals Attack 1 (A1), Attack 2 (A2),
Skill 1 (S1), or Skill 2 (S2), then do a generic attack
function and end it with setting the monster to start
the Skill 1 mode and skip the AI pause

543 “baalthrone” If the current mode equals Skill 3 (S3), then tell the
monster to do its Cast mode (SC)

544
570
709

“baalcrab”
“baalclone”
“uberbaal”

If the current mode equals Skill 3 (S3), then tell the
monster to do its Cast mode (SC)

417
418

“shadowwarrior”
“shadowmaster”

If the current mode equals Skill 4 (S4), then tell the
monster to do a generic attack function

SplEndGeneric - Boolean Field. If equals 1, then check special case handlers of
monsters with specific “BaseId” fields while they are ending certain modes and perform
a function. If equals 0, then ignore this.

Index “BaseId” Mode that is ending Description

110 “vulture1” Skill 1 (S1) Process the event Run AI

118 “willowwisp1” Walk (WL) Process the event Run AI

136 “batdemon1” Skill 3 (S3) or Skill 4 (S4) Process the event Run AI

230
231

“firebeast”
“iceglobe”

Any mode Process the event Run AI

247 “frogdemon1” Sequence (xx) Process the event Run AI

403 “trappedsoul1” Any mode Process the event Run AI

SplClientEnd - Boolean Field. If equals 1, then on the client side, check special case
handlers of monsters with specific “BaseId” fields while they are ending certain modes
and perform a function. If equals 0, then ignore this.

Index “BaseId” Mode that is ending Description

110 “vulture1” Skill 1 (S1) Ignore setting the monster back to
Neutral (NU)

403
404

“trappedsoul1”
“trappedsoul2”

Skill 1 (S1)
or Skill 2 (S2)
or Attack 1 (A1)
or Attack 2 (A2)

Set the mode to Skill 1 (S1)

136 “batdemon1” Skill 3 (S3) Set the mode to Skill 4 (S4)

136 “batdemon1” Skill 4 (S4) Ignore setting the monster back to
Neutral (NU)

118
231

“willowwisp1”
“iceglobe”

Walk (WL) Ignore setting the monster back to
Neutral (NU)

497 “catapult1” Attack 1 (A1) Remove the siege missile and
add a new one

247 “frogdemon1” Sequence (xx) Ignore setting the monster back to
Neutral (NU)

284 “maggotqueen1” Dead (DD) Ignore setting the monster back to
Neutral (NU)

monstats2.txt

Overview

This file controls additional functionalities and statistics for every monster in the game.

This file is treated as a continuation of the monstats.txt file, and therefore its amount of
entries should be identical with the monstats.txt file.

Data Fields

Id - Controls the unique name ID to define the monster. This must match the same
value in the monstats.txt file.

Height - Determines the height of the monster. This has 2 purposes. The first purpose
is to act as an index value for selecting which icebreak missile to use when the monster
dies while frozen. The second purpose is to select a code which affects what attack

animation the player characters will use when attacking the monster (Attack1 and or
Attack2). See each code description types below.

Code Description Code Description

1 icebreaksmall 1 Low Height

2 icebreakmedium 2 High Height

3 icebreaklarge 3 Both types of Heights

4 icebreaksmoke

OverlayHeight - Determines the height value of overlays (See Overlay.txt) for the
monster
pixHeight - Determines the pixel height value for the damage bar when the monster is
selected

SizeX & SizeY - Determines the tile grid size of the monster which is use for handling
placement when the monster spawns or uses movement skills

spawnCol - Controls the method for spawning the monster based on the collisions in
the environment

Code Description

0 Normal - Basic Monster Pathing

1 Water - Handle water terrain where units cannot normally walk, but can fly
over

2 Preset - Placement handler which considers walls, no pathable areas,
objects, doors, items, and other monsters

3 Force - Override any collision

MeleeRng - Controls the range of the monster’s melee attack, which can affect also
affect certain AI pathing. If this value equals 255, then refer to the monster’s weapon
class (“BaseW”).

BaseW - Defines the monster’s base weapon class, which can affect how the monster
attacks

Code Description

hth Hand to Hand (Default value if the value is empty)

1hs One Handed Swing

1ht One Handed Thrust

bow Bow

2hs Two Handed Swing

2ht Two Handed Thrust

1js Dual Wielding - Left Jab Right Swing

1jt Dual Wielding - Left Jab Right Thrust

1ss Dual Wielding - Left Swing Right Swing

1st Dual Wielding - Left Swing Right Thrust

stf Staff

xbw Crossbow

ht1 One Hand to Hand

ht2 Two Hand to Hand

HitClass - Defines the specific class of an attack when the monster successfully hits
with an attack. This can affect the sound and overlay display of the attack hit.

Code Description

0 None

1 Hand to Hand

2 One Handed Swing Small

3 One Handed Swing Large

4 Two Handed Swing Small

5 Two Handed Swing Large

6 One Handed Thrust

7 Two Handed Thrust

8 Club

9 Staff

10 Bow

11 Crossbow

12 Claw

13 Do Overlay

The following are formula fields that define the types of visual graphics to use for the
specific component field. Users can add input parameters by adding a comma “,” to the
input and using a code. For a list of possible component inputs, see the compcode.txt
file.

HDv - Head visual
TRv - Torso visual
LGv - Legs visual
RAv - Right Arm visual
LAv - Left Arm visual
RHv - Right Hand visual
LHv - Left Hand visual
SHv - Shield visual
S1v (to S8v) - Special 1 to Special 8 visual

The following fields are Boolean fields, which control which specific component piece is
enabled for the monster. If equals 1, then the component is enabled. If equals 0, then
the monster does not have that component.
HD - Head
TR - Torso
LG - Legs
RA - Right Arm
LA - Left Arm
RH - Right Hand
LH - Left Hand
SH - Shield
S1 (to S8) - Special 1 to Special 8

TotalPieces - Defines the total amount of component pieces that the monster uses.
This value should match the number of enabled Boolean fields listed above.

mDT - Boolean Field. If equals 1, then enable the Death Mode for the monster. If equals
0, then this mode is disabled.
mNU - Boolean Field. If equals 1, then enable the Neutral Mode for the monster. If
equals 0, then this mode is disabled.
mWL - Boolean Field. If equals 1, then enable the Walk Mode for the monster. If equals
0, then this mode is disabled.
mGH - Boolean Field. If equals 1, then enable the Get Hit Mode for the monster. If
equals 0, then this mode is disabled.
mA1 & mA2- Boolean Field. If equals 1, then enable the Attack 1 (and Attack 2) Mode
for the monster. If equals 0, then this mode is disabled.
mBL - Boolean Field. If equals 1, then enable the Block Mode for the monster. If equals
0, then this mode is disabled.
mSC - Boolean Field. If equals 1, then enable the Cast Mode for the monster. If equals
0, then this mode is disabled.
mS1 (to mS4) - Boolean Field. If equals 1, then enable the Skill 1 (to Skill4) Mode for
the monster. If equals 0, then this mode is disabled.
mDD - Boolean Field. If equals 1, then enable the Dead Mode for the monster. If equals
0, then this mode is disabled.
mKB - Boolean Field. If equals 1, then enable the Knockback Mode for the monster. If
equals 0, then this mode is disabled.
mSQ - Boolean Field. If equals 1, then enable the Sequence Mode for the monster. If
equals 0, then this mode is disabled.
mRN - Boolean Field. If equals 1, then enable the Run Mode for the monster. If equals
0, then this mode is disabled.

dDT - Defines the number of directions that the monster can face during Death Mode
dNU - Defines the number of directions that the monster can face during Neutral Mode
dWL - Defines the number of directions that the monster can face during Walk Mode
dGH - Defines the number of directions that the monster can face during Get Hit Mode
dA1 & dA2 - Defines the number of directions that the monster can face during Attack 1
(and Attack 2) Mode
dBL - Defines the number of directions that the monster can face during Block Mode
dSC - Defines the number of directions that the monster can face during Cast Mode
dS1 (to dS4) - Defines the number of directions that the monster can face during Skill 1
(to Skill 4) Mode
dDD - Defines the number of directions that the monster can face during Dead Mode
dKB - Defines the number of directions that the monster can face during Knockback
Mode
dSQ - Defines the number of directions that the monster can face during Sequence
Mode
dRN - Defines the number of directions that the monster can face during Run Mode

A1mv & A2mv - Boolean Field. If equals 1, then enable the Attack 1 (and Attack 2)
Mode while the monster is moving with the Walk mode or Run mode. If equals 0, then
this mode is disabled while the monster is moving.
SCmv - Boolean Field. If equals 1, then enable the Cast Mode while the monster is
moving with the Walk mode or Run mode. If equals 0, then this mode is disabled while
the monster is moving.
S1mv (to S4mv) - Boolean Field. If equals 1, then enable the Skill 1 (to Skill 4) Mode
while the monster is moving with the Walk mode or Run mode. If equals 0, then this
mode is disabled while the monster is moving.

noGfxHitTest - Boolean Field. If equals 1, then enable the mouse selection bounding
box functionality around the monster. If equals 0, then the monster cannot be selected
by the mouse.
htTop - Define the pixel top offset around the monster for the mouse selection bounding
box functionality. This field relies on the “noGfxHitTest” field being enabled.
htLeft - Define the pixel left offset around the monster for the mouse selection bounding
box functionality. This field relies on the “noGfxHitTest” field being enabled.
htWidth - Define the pixel right offset around the monster for the mouse selection
bounding box functionality. This field relies on the “noGfxHitTest” field being enabled.
htHeight - Define the pixel bottom offset around the monster for the mouse selection
bounding box functionality. This field relies on the “noGfxHitTest” field being enabled.

restore - Determines if the monster should be placed on the inactive list, to be saved
when the level unloads. If equals 0, then do not save the monster. If equals 1, then rely
on other checks to determine to save the monster. If equals 2, then force save the
monster.

automapCel - Controls what index of the Automap tiles to use to display this monster
on the Automap. This field relies on the “noMap” field being disabled.
noMap - Boolean Field. If equals 1, then the monster will not appear on the Automap. If
equals 0, then the monster will normally appear on the Automap.

noOvly - Boolean Field. If equals 1, then no looping overlays will be drawn on the
monster. If equals 0, then overlays will be drawn on the monster. (See Overlay.txt)

isSel - Boolean Field. If equals 1, then the monster is selectable and can be targeted. If
equals 0, then the monster cannot be selected.
alSel - Boolean Field. If equals 1, then the player can always select the monster,
regardless of being an ally or enemy. If equals 0, then ignore this.
noSel - Boolean Field. If equals 1, then the player can never select the monster. If
equals 0, then ignore this.
shiftSel - Boolean Field. If equals 1, then the player can target this monster when
holding the Shift key and clicking to use a skill. If equals 0, then the monster cannot be
targeted while the player is holding the Shift key.

corpseSel - Boolean Field. If equals 1, then the monster’s corpse can be with the
mouse cursor. If equals 0, then the monster’s corpse cannot be selected with the mouse
cursor.

isAtt - Boolean Field. If equals 1, then the monster can be attacked. If equals 0, then
the monster cannot be attacked.
revive - Boolean Field. If equals 1, then the monster is allowed to be revived by the
Necromancer Revive skill. If equals 0, then the monster cannot be revived by the
Necromancer Revive skill.
critter - Boolean Field. If equals 1, then the monster will be flagged as a critter, which
gives some special case handling such as not creating impact sounds and differently
handling its spawn placement in presets. If equals 0, then ignore this.
small - Boolean Field. If equals 1, then the monster will be classified as a small type,
which can affect what types of missiles can be used on the monster (Example:
Barbarian Grim Ward size) or how the monster is knocked back. If equals 0, then ignore
this. If this field is enabled, then the “large” field should be disabled, to avoid confusion.
large - Boolean Field. If equals 1, then the monster will be classified as a large type,
which can affect what types of missiles can be used on the monster (Example:
Barbarian Grim Ward size) or how the monster is knocked back. If equals 0, then ignore
this. If this field is enabled, then the “small” field should be disabled, to avoid confusion.
soft - Boolean Field. If equals 1, then the monster’s corpse is classified as soft bodied,
meaning that its corpse can be used by certain corpse skills such as Barbarian Find
Potion, Find Item, or Grim Ward. If equals 0, then the monster’s corpse cannot be used
for these skills.
inert - Boolean Field. If equals 1, then the monster will never attack its enemies. If
equals 0, then ignore this.

objCol - Boolean Field. If equals 1 and the monster class is “barricadedoor”,
“barricadedoor2”, or “evilhut”, then the monster will place an invisible object with
collision. If equals 0, then ignore this.
deadCol - Boolean Field. If equals 1, then the monster’s corpse will have collision with
other units. If equals 0, then the monster’s corpse will not have collision.

unflatDead - Boolean Field. If equals 1, then ignore the corpse draw order for rendering
the sprite on top of others, while the monster is dead. If equals 0, then the monster’s
corpse will have a normal corpse draw order.
Shadow - Boolean Field. If equals 1, then the monster will project a shadow on the
ground. If equals 0, then the monster will not project a shadow.
noUniqueShift - Boolean Field. If equals 1 and the monster is a Unique monster, then
the monster will not have random color palette transform shifts. If equals 0, then the
non-Unique monster will have random color palette transform shifts.
compositeDeath - Boolean Field. If equals 1, then the monster’s Death Mode and
Dead mode will make use of its component system. If equals 0, then the monster will
default to using the Hand-To-Hand weapon class and no component system.

localBlood - Controls the color of the monster’s blood based on the region locale. If
equals 0, then do not change the blood to green and keep it red. If equals 1, then
change the monster’s special components to use the green blood locale. If equals 2,
then change the blood to green.
Bleed - Controls if the monster will create blood missiles. If equals 0, then the monster
will never bleed. If equals 1, then the monster will randomly create the “blood1” or
“blood2” missiles when hit. If equals 2, then the monster will randomly create the
“blood1”, “blood2”, “bigblood1”, or “bigblood2” missiles when hit.

Light - Controls the monster’s minimum Light Radius size (measured in grid sub-tiles)
light-r - Controls the red color value of the monster’s Light Radius (Uses a value from 0
to 255)
light-g - Controls the green color value of the monster’s Light Radius (Uses a value
from 0 to 255)
light-b - Controls the blue color value of the monster’s Light Radius (Uses a value from
0 to 255)

Utrans & Utrans(N) & Utrans(H) - Modifies the color palette transform for the monster
respectively in Normal, Nightmare, and Hell difficulty.

Code Description

0 Cold

1 Poison

2 Level 0

3 Level 1

4 Level 2

5 Level 3

6 Level 4

7 Miscellaneous

255 Special case handler.
If hostile, then select the Cold transform.
If not hostile, then select the Poison transform.

InfernoLen - The frame length to hold the channel cast time of the inferno skill. This is
used for when the monster has the “inferno” state, or for Diablo when he is using the
“DiabLight” skill.
InfernoAnim - The exact frame in the channel animation to loop back and start at again
InfernoRollback - The exact frame in the channel animation to determine when to roll
back to the “InfernoAnim” frame

ResurrectMode - Controls which monster mode to set on the monster when it is
resurrected

Code Description

DT Death

NU Neutral

WL Walk

GH Get Hit

A1 Attack 1

A2 Attack 2

BL Block

SC Cast

S1 Skill 1

S2 Skill 2

S3 Skill 3

S4 Skill 4

DD Dead

GH Knockback

xx Sequence

RN Run

ResurrectSkill - Controls what skill should the monster use when it is resurrected (See
skills.txt).

MonType.txt

Overview

This file handles the classification, naming conventions and element of monsters

This is used by the monstats.txt data file

Data Fields

type - Defines the unique monster type ID
equiv1 (to equiv3) - Points to the index of another Monster Type to reference as a
parent. This is used to create a hierarchy for Monster Types where the parents will have
more universal settings shared across the related children
strplur - Uses a string for the plural form of the monster type. This is used for the
“descfunc” code 22 function from the ItemStatCost.txt file, based on the monster type
selected.

element - Defines the monster’s element type. This can be used for the Necromancer’s
Raise Skeletal Mage skill for determining what elemental type a Skeletal Mage should
be based on the monster it was raised from (If the monster has no element, then the
skeletal mage element will be randomly selected).

Code Description

(empty) Any Element

pois Poison

cold Cold

fire Fire

ltng Lightning

monumod.txt

Overview

This file controls the different monster modifiers for special monsters, including Unique
and Champion monsters

Any column field name starting with “*” is considered a comment field and is not used by
the game

The “(N)” text in field names signifies to use that specific value for games in Nightmare
difficulty
The “(H)” text in field names signifies to use that specific value for games in Hell
difficulty

Data Fields

uniquemod - This is a reference field to define the monster modifier
id - Defines the unique numeric ID for the monster modifier. Used as a reference in
other data files.
enabled - Boolean Field. If equals 1, then this monster modifier will be an available
option for monsters to spawn with. If equals 0, then this monster modifier will never be
used.
version - Defines which game version to use this monster modifier (<100 = Classic
mode | 100 = Expansion mode)

xfer - Boolean Field. If equals 1, then this monster modifier can be transferred from the
Boss monster to his Minion monsters, including auras. If equals 0, then the monster
modifier will never be transferred.
champion - Boolean Field. If equals 1, then this monster modifier will only be used by
Champion monsters. If equals 0, then the monster modifier can be used by any type of
special monster.

fPick - Controls if this monster modifier is allowed on the monster based on the function
code and the parameters it checks.

Code Description

0
(or empty)

Ignore this

1 Monster class must have the Attack 1 mode (checks “mA1” field from
monstats.txt)

2 Monster class cannot be flagged as Melee (checks “IsMelee” field from
monstats.txt)

Monster class cannot have the No Multishot flag (checks “nomultishot”
field from monstats.txt)

3 Monster class must have the Walk mode (checks “mWL” field from
monstats.txt)

exclude1 & exclude2 - This controls which Monster Types should not have this
monster modifier (Uses the “type” field from MonType.txt)

cpick & cpick (N) & cpick (H) - Modifies the chances that this monster modifier will be
chosen for a Champion monster, compared to other monster modifiers. The higher the
value is, then the more likely this modifier will be chosen. This value acts as a
numerator and a denominator. All “cpick” values get summed together to give a total
denominator, used for the random roll. For example, if there are 3 possible monster
modifiers, and their “cpick” values are 3, 4, 6, then their chances to be chosen are 3/13,
4/13, and 6/13 respectively.

upick & upick (N) & upick (H) - Modifies the chances that this monster modifier will be
chosen for a Unique monster, compared to other monster modifiers. The higher the
value is, then the more likely this modifier will be chosen. This value acts as a
numerator and a denominator. All “upick” values get summed together to give a total
denominator, used for the random roll. For example, if there are 3 possible monster
modifiers, and their “upick” values are 3, 4, 6, then their chances to be chosen are 3/13,
4/13, and 6/13 respectively.

constants - These values control a special list of numeric parameters for special
monsters. The row that each constant appears in the data file is unrelated. You can
treat this column almost like a separate data file that controls other aspects of special
monsters. See the description next to each value for more specific clarification on each
constant.

monsounds.txt

Overview

This file controls the sounds that play for each of a monster’s actions

This file relies on sounds from sounds.txt

This file is used by the monstats.txt file

Data Fields

Id - Defines the unique name ID for the monster sound

Attack1 & Attack2 - Play this sound when the monster performs Attack 1 and Attack 2,
respectively. Points to a “Sound” value in the sounds.txt file.
Weapon1 & Weapon2 - Play this sound when the monster performs Attack 1 and
Attack 2, respectively. This acts as an extra sound that can play with the “Attack1” and
“Attack2” sounds. Points to a “Sound” value in the sounds.txt file.
Att1Del & Att2Del - Controls the amount of game frames to delay playing the “Attack1”
and “Attack2” sounds, respectively.
Wea1Del & Wea2Del - Controls the amount of game frames to delay playing the
“Weapon1” and “Weapon2” sounds, respectively.
Att1Prb & Att2Prb - Controls the percent chance (out of 100) to play the “Attack1” and
“Attack2” sounds, respectively.
Wea1Vol & Wea2Vol - Controls the volume of the “Weapon1” and “Weapon2” sounds,
respectively. Uses a range between 0 to 255, where 255 is the maximum volume.

HitSound - Play this sound when the monster gets hit or knocked back. Points to a
“Sound” value in the sounds.txt file.
DeathSound - Play this sound when the monster dies. Points to a “Sound” value in the
sounds.txt file.
HitDelay - Controls the amount of game frames to delay playing the “HitSound” sound
DeaDelay - Controls the amount of game frames to delay playing the “DeathSound”
sound

Skill1 (to Skill4) - Play this sound when the monster uses the skill linked in the related
“Skill#” field from the monstats.txt file. Points to a “Sound” value in the sounds.txt file.

Footstep - Play this sound while the monster is walking or running. Points to a “Sound”
value in the sounds.txt file.
FootstepLayer - Play this sound while the monster is walking or running. This acts as
an extra sound that can play with the “Footstep” sound. Points to a “Sound” value in the
sounds.txt file.
FsCnt - Controls the footstep count which is used to determine how often to play the
“Footstep” and “FootstepLayer” sound. A higher value would mean that the sounds
would play more often.
FsOff - Controls the footstep offset which is used for calculating when to play the next
“Footstep” and “FootstepLayer” sound, based on the current animation frame and the
animation rate. A higher value would mean that the sounds would play less often.
FsPrb - Controls the probability to play the “Footstep” and “FootstepLayer” sound, with
a random chance out of 100.

Neutral - Play this sound while the monster is in Neutral, Walk, or Run mode. Also play
this sound when the monster “Id” equals “vulture1” and while the monster is in Skill1
mode. Also play this sound when the monster “Id” equals “batdemon1” and while the
monster is in Skill4 mode. Points to a “Sound” value in the sounds.txt file.
NeuTime - Controls the amount of game frames to delay between re-playing the
“Neutral” sound after it finishes.

Init - Play this sound when the monster spawns and is not dead and is not playing its
Neutral sound. Points to a “Sound” value in the sounds.txt file.
Taunt - Play this sound when the server requests that the monster should play its
Taunt. This is typically used for quest or story related moments. Points to a “Sound”
value in the sounds.txt file.
Flee - Play this sound when the monster is told to flee. This depends on when the
monster AI is told to play this sound. Points to a “Sound” value in the sounds.txt file.

CvtMo1 (to CvtMo3) - This is used to convert the mode for playing the sound. This field
defines the original mode that the monster is using. (See MonMode.txt for the list of
possible inputs)
CvtSk1 (to CvtSk3) - Defines the skill that the monster is using. If the monster uses a
specific skill, then the game can change the monster’s mode for sound functionalities to
another mode to change how sounds are generally handled. Points to a “skill” in the
skills.txt file.
CvtTgt1 (to CvtTgt3) - Defines the mode to convert the sound to when the monster is
using the relative skill from the “CvtSk#” field. This does not actually change the
monster’s actual mode but only what mode that sounds think the monster is using. (See
MonMode.txt for the list of possible inputs)

npc.txt

Overview

This file controls how each town NPC manipulates their store prices

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

npc - Points to the matching “Id” value in the monstats.txt file. This should not be
changed.

buy mult - Used to calculate the item’s price when it is bought by the NPC from the
player. This number is a fraction of 1024 in the following formula: [cost] * [buy mult] /
1024
sell mult - Used to calculate the item’s price when it is sold by the NPC to the player.
This number is a fraction of 1024 in the following formula: [cost] * [sell mult] / 1024
rep mult - Used to calculate the cost to repair an item. This number is a fraction of 1024
in the following formula: [cost] * [rep mult] / 1024. This is then used to influence the
repair cost based on the item durability and charges.

questflag A (to questflag C) - If the player has this quest flag progress, then apply the
relative additional price calculations

Code Quest Progress

0 Act 1 Prologue Seen

1 Den of Evil Completed

2 Sisters’ Burial Grounds Completed

3 Tools of the Trade Completed

4 The Search for Cain Completed

5 The Forgotten Tower Completed

6 Sisters to the Slaughter Completed

7 Act 1 Traversed

8 Act 2 Prologue Seen

9 Radament’s Lair Completed

10 The Horadric Staff Completed

11 Tainted Sun Completed

12 Arcane Sanctuary Completed

13 The Summoner Completed

14 The Seven Tombs Completed

15 Act 2 Traversed

16 Act 3 Prologue Seen

17 Lam Esen's Tome Completed

18 Khalim's Will Completed

19 Blade of the Old Religion Completed

20 The Golden Bird Completed

21 The Blackened Temple Completed

22 The Guardian Completed

23 Act 3 Traversed

24 Act 4 Prologue Seen

25 The Fallen Angel Completed

26 Terror's End Completed

27 Hell's Forge Completed

28 Act 4 Traversed

29 Rogue Warning Complete

30 Guard in Town Warning Complete

31 Guard in Desert Warning Complete

32 Dark Wanderer Seen

33 Angel Warning Complete

34 Act 5 Prologue Seen

35 Siege on Harrogath Completed

36 Rescue on Mount Arreat Completed

37 Prison of Ice Completed

38 Betrayal of Harrogath Completed

questbuymult A (to questbuymult C) - Same functionality as the “buy mult” field,
except this relies on the “questflag” field and applies after the “buy mult” field calculation
questsellmult A (to questsellmult C) - Same functionality as the “sell mult” field,
except this relies on the “questflag” field and applies after the “sell mult” field calculation
questrepmult A (to questrepmult C) - Same functionality as the “rep mult” field,
except this relies on the “questflag” field and applies after the “rep mult” field calculation

max buy & max buy (N) & max buy (H) - Sets the maximum price that the NPC will
pay, when the player sells an item in Normal Difficulty, Nightmare Difficulty, and Hell
Difficulty, respectively

objects.txt

Overview

This file controls the functionalities of all objects found in area levels

The order of each object defined in this file will convey what ID value it has, and thus
should not be changed

This file uses the following files: ObjMode.txt, objpreset, ObjType.txt, shrines.txt

Any column field name starting with “*” is considered a comment field and is not used by
the game

Objects are always set to be using a specific mode, which controls which fields to use
for functionalities. There are 8 possible Object modes, each tied to an ID number.
Specific fields are numbered to match each of these modes, meaning that the object will
use that specific field number when in a certain mode (See ObjMode.txt)

Number Object Mode Token

0 Neutral NU

1 Operating OP

2 Opened ON

3 Special 1 S1

4 Special 2 S2

5 Special 3 S3

6 Special 4 S4

7 Special 5 S5

39 Rite of Passage Completed

40 Eve of Destruction Completed

41 Respecialization from Akara is Completed

Data Fields

Class - Defines the unique type class of the object which is used to reference this
object. These are also defined in the objpreset.txt file.
Name - String key. Used as the display name of the object when being highlighted by
the player.
Token - Determines what files to use to display the graphics of the object. These are
defined by the ObjType.txt file.

Selectable0 (to Selectable7) - Boolean Field. If equals 1, then the object can be
selected by the player and highlighted when hovered on by the mouse cursor. If equals
0, then the object cannot be selected and will not highlight when the player hovers the
mouse over it. Each field is numbered, correlating to 1 of 8 Object Modes that the object
uses (See Overview section, or ObjMode.txt).

SizeX & SizeY - Controls the amount of sub tiles that the object occupies using X and Y
coordinates. This is generally used for measuring the object’s size when trying to spawn
objects in rooms and controlling their distances apart.

FrameCnt0 (To FrameCnt7) - Controls the frame length of the object’s mode. If this
equals 0, then that mode will be skipped. Each field is numbered, correlating to 1 of 8
Object Modes that the object uses (See Overview section, or ObjMode.txt).
FrameDelta0 (to FrameDelta7) - Controls the animation frame rate of how many
frames to update per delta (Measured in 256ths). Each field is numbered, correlating to
1 of 8 Object Modes that the object uses (See Overview section, or ObjMode.txt).
CycleAnim0 (to CycleAnim7) - Boolean Field. If equals 1, then the object’s current
animation will loop back to play again when it finishes. If equals 0, then the object will
generally play the Opened mode after playing the Operating mode. Each field is
numbered, correlating to 1 of 8 Object Modes that the object uses (See Overview
section, or ObjMode.txt).
Lit0 (to Lit7) - Controls the Light Radius distance value for the object. If this value
equals 0, then the object will not emit a Light Radius. Each field is numbered,
correlating to 1 of 8 Object Modes that the object uses (See Overview section, or
ObjMode.txt).
BlocksLight0 (to BlocksLight7) - Boolean Field. If equals 1, then the object will draw a
shadow. If equals 0, then the object will not draw a shadow. Each field is numbered,
correlating to 1 of 8 Object Modes that the object uses (See Overview section, or
ObjMode.txt).
HasCollision0 (to HasCollision7) - Boolean Field. If equals 1, then the object will have
collision. If equals 0, then the object will not have collision, and units can walk through it.
Each field is numbered, correlating to 1 of 8 Object Modes that the object uses (See
Overview section, or ObjMode.txt).
IsAttackable0 - Boolean Field. If equals 1, then the player can target this object to be
attacked, and the player will use the Kick skill when operating the object. If the object
has the Class equal to “CompellingOrb” or “SoulStoneForge”, then instead of using the

Kick skill, players will use the Attack skill when operating the object. If equals 0, then
ignore this, and the player will not use a skill or animation when operating the object.
Start0 (to Start7) - Controls the frame for where the object will start playing the next
animation. Each field is numbered, correlating to 1 of 8 Object Modes that the object
uses (See Overview section, or ObjMode.txt).
EnvEffect - Boolean Field. If equals 1, then enable the object to update its mode based
on the game’s time of day. This can mean that when the object is spawned, and it is
current day time and the object is in Opened or Operating mode, then it will reset back
to Neutral mode. Also, if the current time is dusk, night, or dawn and the object is in
Neutral mode, then it will change to Operating mode. If equals 0, then the object will not
update its mode based on the time of day.
IsDoor - Boolean Field. If equals 1, then the object will be treated as a door when the
game handles its collision, animation properties, tooltips, and commands. If equals 0,
then ignore this.
BlocksVis - Boolean Field. If equals 1, then the object will block the player’s line of
sight to see anything beyond the object. If equals 0, then ignore this. This field relies on
the “IsDoor” field being enabled.

Orientation - Determines the object’s orientation type, which can affect mouse
selection priority of the object when a unit is being rendered in front of or behind the
object (such as a door object covering a unit and how the mouse selection should
handle that). This also affects the randomization of the coordinates when spawning the
object near the edge of a room.

Code Description

0
(or other #)

Center

1 Right

2 Left

OrderFlag0 (to OrderFlag7) - Controls how the object’s sprite is drawn, which can
affect how it is displayed in Perspective game camera mode. Each field is numbered,
correlating to 1 of 8 Object Modes that the object uses (See Overview section, or
ObjMode.txt).

Code Description

0 Do nothing

1 Flat floor

2 Wall

PreOperate - Boolean Field. If equals 1, then enable a random chance that the object
will spawn in already in Opened mode. The game will choose a 1/14 chance that this
can happen when the object is spawned. If equals 0, then ignore this.
Mode0 (to Mode7) - Boolean Field. If equals 1, then confirm that this object has the
correlating mode. If equals 0, then this object will not have the correlating mode. This
flag can affect how the object functions work. Each field is numbered, correlating to 1 of
8 Object Modes that the object uses (See Overview section, or ObjMode.txt).
Xoffset & Yoffset - Controls the offset values in the X and Y directions for the object’s
visual graphics. This is measured in game pixels.

Draw - Boolean Field. If equals 1, then draw the object’s shadows. If equal’s 0, then do
not draw the object’s shadows.

Red - Controls the Red color gradient of the object’s Light Radius. This field depends on
the “Lit#” field having a value greater than 0.
Green - Controls the Green color gradient of the object’s Light Radius. This field
depends on the “Lit#” field having a value greater than 0.
Blue - Controls the Blue color gradient of the object’s Light Radius. This field depends
on the “Lit#” field having a value greater than 0.

HD - Boolean Field. If equals 1, then the object will be flagged to have a Head
composite piece, and the game will use the component system to handle the object’s
mouse selection collision box. If equals 0, then ignore this.
TR - Boolean Field. If equals 1, then the object will be flagged to have a Torso
composite piece, and the game will use the component system to handle the object’s
mouse selection collision box. If equals 0, then ignore this.
LG - Boolean Field. If equals 1, then the object will be flagged to have a Legs composite
piece, and the game will use the component system to handle the object’s mouse
selection collision box. If equals 0, then ignore this.
RA - Boolean Field. If equals 1, then the object will be flagged to have a Right Arm
composite piece, and the game will use the component system to handle the object’s
mouse selection collision box. If equals 0, then ignore this.
LA - Boolean Field. If equals 1, then the object will be flagged to have a Left Arm
composite piece, and the game will use the component system to handle the object’s
mouse selection collision box. If equals 0, then ignore this.
RH - Boolean Field. If equals 1, then the object will be flagged to have a Right Hand
composite piece, and the game will use the component system to handle the object’s
mouse selection collision box. If equals 0, then ignore this.
LH - Boolean Field. If equals 1, then the object will be flagged to have a Left Hand
composite piece, and the game will use the component system to handle the object’s
mouse selection collision box. If equals 0, then ignore this.
SH - Boolean Field. If equals 1, then the object will be flagged to have a Shield
composite piece, and the game will use the component system to handle the object’s
mouse selection collision box. If equals 0, then ignore this.
S1 (to S8) - Boolean Field. If equals 1, then the object will be flagged to have a Special
composite piece, and the game will use the component system to handle the object’s
mouse selection collision box. If equals 0, then ignore this.
TotalPieces - Defines the total amount of composite pieces. If this value is greater than
1, then the game will treat the object with the multiple composite piece system, and the
player can hover the mouse over and select the object’s different components.

SubClass - Determines the object’s class type by declaring a specific value. This is
used by the various functions (“InitFn”, “OperateFn”, “PopulateFn”) for knowing how to
handle specific types of objects.

Code Description

0 None

1 Shrine

2 Obelisk

4 Portal (With a source & destination)

8 Trappable

16 Fixed Portal

32 Well

64 Waypoint

128 Hidden

Xspace & Yspace - Controls the X and Y distance delta values between adjacent
objects when they are being populated together. This field is only used by the Populate
Function (“PopulateFn”) values 3 and 4, for the Add Barrels and Add Crates functions.
NameOffset - Controls the vertical offset of the name tooltip’s position above the object
when the object is being selected. This is measured in pixels.
MonsterOK - Boolean Field. If equals 1, then if a monster operates the object, then the
object will run its operate function. If equals 0, then then if a monster operates the
object, then the object will not run its operate function.
ShrineFunction - Controls what shrine function to use (See “Code” field in shrines.txt)
when the object is told to do its Skill command.
Restore - Boolean Field. If equals 1, the game will restore the object in an inactive state
when the area level repopulates after a player loads back into it. If equals 0, then the
game will not restore the object.

Parm0 (to Parm4) - Used as possible parameters for various functions for the object

Lockable - Boolean Field. If equals 1, then the object will have a random chance to
spawn with the locked attribute and have a display tooltip name with the “lockedchest”
string key. This only works when the object has the Init Function (“InitFn”) value equal to
3. If equals 0, then ignore this.
Gore - Controls if an object should call its Populate function (“PopulateFn”) when it is
chosen as an object that can spawn in a room. Objects with a gore value greater than 2
will not be populated in rooms.
Sync - Boolean Field. If equals 1, then the object’s animation rate will always match the
“FrameDelta#” field (depending on the object’s mode) which means the client and
server will have synced animations. If equals 0, then the animation rate will have
random visual variation.
Damage - Controls the amount of damage dealt by the object when it performs an
Operate Function (“OperateFn”) that deals damage such as triggering a pulse trap or an
explosion.

Overlay - Boolean Field. If equals 1, then add and remove an overlay on the object
based on its current mode. If equals 0, then ignore this. This field will only work with
specific object Classes and will use specific Overlays for those objects.

Object Class Overlay

SpecialChest100
KhalimHeartChest

multigleam

KhalimEyeChest
KhalimBrainChest
HoradricCubeChest
HoradricScrollChest
StaffOfKingsChest
ConsolationChest

SevenTombsReceptacle horadric_light

TaintedSunShrine horadric_light

CollisionSubst - Boolean Field. If equals 1, then the game will handle the bounding
box around the object for mouse selection. The game will use the object’s pixel size and
“Left”, “Top”, “Width”, “Height” field values to determine the collision size. If equals 0,
then ignore this.
Left - Controls the starting X position offset value for drawing the bounding collision box
around the object for mouse selection. This field depends on the “CollisionSubst” field
being enabled.
Top - Controls the starting Y position offset value for drawing the bounding collision box
around the object for mouse selection. This field depends on the “CollisionSubst” field
being enabled.
Width - Controls the ending X position offset value for drawing the bounding collision
box around the object for mouse selection. This field depends on the “CollisionSubst”
field being enabled.
Height - Controls the ending Y position offset value for drawing the bounding collision
box around the object for mouse selection. This field depends on the “CollisionSubst”
field being enabled.

OperateFn - Defines a function that the game will use when the player clicks on the
object

Code Description

0 Do nothing

1 Spawn Item And Maybe Monster - General function to operate an object,
spawn items. Also can randomly spawn a monster and/or trigger a trap.

2 Shrine - General function for Shrine objects. Uses fields from the shrines.txt
file for determining specific Shrine functions.

3 Spawn Item Sometimes - General function to operate the object and spawn
random items. Has a 20% chance to spawn a random item. Can also
randomly trigger a trap.

4 Chest Operate - General function for opening chest objects and spawning
random items. Handles key interaction functionality if the chest object is
locked

5 Barrel Operate - General function for breaking barrel objects and randomly
spawning items or possibly a monster

6 Quest Tome Operate - Handles updating The Forgotten Tower quest
progress

7 Barrel Exploding Operate - Explode the object and also explode adjacent
Exploding Barrel object Classes

8 Door Operate - General function for opening and closing door objects

9 Quest Cairn Stone Operate - Handle operating the 5 Cairn Stone objects
based on the player’s progress for the Search for Cain quest and if the player
has the deciphered Scroll of Inifuss item. Also removes the Scroll of Inifuss
item once successfully operated.

10 Quest Gibbet Operate - Handle operating the object and updating the
player’s progress for the Search for Cain quest. This is used for the cage
object that Deckard Cain is trapped in.

11 Brazier Operate - Switch the object from Neutral mode to Operating/Opened
mode, or vice versa

12 Quest Inifuss Operate - Handle dropping the Bark Scroll item, based on the
player’s progress for the Search for Cain quest

13 Tiki Operate - Switch the object from Neutral mode to Operating mode, or
vice versa

14 Spawn Item - General function to operate an object and have it spawn
random items. Can also remove the object’s collision and randomly trigger a
trap.

15 Town Portal Operate - Controls the Town Portal functionalities, including how
to teleport players back to town or to the current level, and handling how
players interact with other player Town Portals

16 Trap Door Operate - Open a door type object and then control its level warp
capabilities

17 Obelisk 1 - Use the transaction UI if the player has a gem in their inventory,
and operate the object

18 Secret Door Operate - Handle operating an object and removing its collision

19 Armor Rack Operate - Activate the object to spawn a random armor item

20 Weapon Rack Operate - Activate the object to spawn a random weapon item

21 Quest Malus Operate - Handle dropping the Horadric Malus item, based on
the player’s progress for the Tools of the Trade quest

22 Well Operate - Handle healing the player and keeping track of the charges
and regeneration of charges for the well object

23 Waypoint Operate - Handle activating a waypoint object and using the
Waypoint UI when clicking on an activated waypoint object

24 Quest Tainted Sun Altar Operate - Create the Amulet of the Viper item and
other treasure items based on The Horadric Staff quest progress and the
number of players in the game. Also update the progress for the Tainted Sun
quest.

25 Quest Seven Tombs Receptacle Operate - Handle using the Horadric Staff
item with the transaction UI to operate the object

26 Bookshelf Operate - Randomly create either tomes or scrolls of Identify or
Town Portal

27 Teleport Pad Operate - Teleport the player to another part of the room

28 Quest Lam Esens Tome Operate - Handle dropping the Lam Esen’s Tome
item, based on the player’s progress for the Lam Esen’s Tome quest

29 Breakable Operate - Animate the object and remove its collision

30 Exploding - Create an explosion around the object

31 Quest Gidbinn Operate - Handle dropping the Decoy Gidbinn item, based on
the player’s progress for the Blade of the Old Religion quest

32 Player Bank Operate - Control accessing the Stash UI while in town for the
Bank object Class

33 Wirt Spurt - Create the Wirt’s leg item and animate the object

34 Arcane Portal - Control how the warp object transitions the player from the
Palace Cellar Level 3 to the Arcane Sanctuary

35 Return null

36 Return null

37 Return null

38 Return null

39 Quest Horadric Cube Chest Operate - Create the Horadric Cube item and
other treasure items based on The Horadric Staff quest progress and the
number of players in the game

40 Quest Horadric Scroll Chest Operate - Create the Horadric Scroll item and
other treasure items based on The Horadric Staff quest progress and the
number of players in the game

41 Quest Staff of Kings Chest Operate - Create the Staff of Kings item and other
treasure items based on The Horadric Staff quest progress and the number
of players in the game

42 Quest Arcane Tome Operate - Handles updating The Arcane Sanctuary
quest progress

43 One Way Portal Operate - Controls the functionalities of the “DurielPortal”
one way warp object

44 Quest Beneath The City Stairs Operate - Handles warp object operates
based on the Khalim’s Flail quest progress

45 Quest Beneath The City Lever Operate - Handles operating an object based
on the Khalim’s Flail quest progress

46 Hell Gate Operate - Handles how to transition the player to Act 4 based on
The Guardian quest progress

47 Stairs Operate - Handles how the stairs object opens or warp the player to
another level

48 Jack In The Box Operate - Handles the operating the object and having it
spawn items and set its mode to Special 2.

49 Quest Soulstone Forge Operate - Handle operating the object based on The
Hellforge quest progress and how it spawns items. Also remove the Hellforge
Hammer weapon from the player.

50 Quest Mephisto Door Operate - Handles how the stairs object opens or warp
the player to another level

51 Delay Spawn Operate - Waits until the object is done operating before
updating events

52 Quest Diablo Seal Operate - Handle operating a Diablo Seal object while also
tracking the progress on the other related Diablo Seal objects (5 in total).

53 Quest Compelling Orb Operate - Handle operating the object based on the
Khalim’s Flail quest progress and The Blackened Temple progress. Also
remove the Khalim’s Flail weapon from the player.

54 Quest Diablo Seal 1 Operate - Handle operating a Diablo Seal object Class
and getting a spawn point for monsters. Also calls function 52.

55 Quest Diablo Seal 3 Operate - Handle operating a Diablo Seal object Class
and getting a spawn point for monsters. Also calls function 52.

56 Quest Diablo Seal 5 Operate - Handle operating a Diablo Seal object Class
and getting a spawn point for monsters. Also calls function 52.

57 Quest Khalim Heart Chest Operate - Create the Khalim’s Heart item and
other treasure items based on the Khalim’s Flail quest progress and the
number of players in the game

58 Quest Khalim Eye Chest Operate - Create the Khalim’s Eye item and other
treasure items based on the Khalim’s Flail quest progress and the number of
players in the game

59 Quest Khalim Brain Chest Operate - Create the Khalim’s Brain item and other
treasure items based on the Khalim’s Flail quest progress and the number of
players in the game

60 Return null

61 Town Gate - Handles how the gate object opens and closes

62 Handles the modes of one of the Ancient’s statues based on the player’s
progress of the Rite of Passage quest

63 Same as function 62

64 Same as function 62

65 Quest Ancient Altar Operate - Handle displaying quest text and disabling the
player’s town portals, based on the player’s progress of the Rite of Passage
quest.

66 Quest Ancient Gateway Operate - Handle opening the door object based on
the player’s progress of the Rite of Passage quest.

67 Quest Frozen Anya Operate - Handles the object displaying quest text or
validating that the player has the Malah’s Potion item and updating the Prison
of Ice quest

68 Evil Urn - Handle triggering a trap from the object

69 Quest Ancient Invisible Operate - Handle displaying the A5Q6InitAncients
string conversation text based on the player’s progress of the Rite of
Passage quest.

70 Quest Last Exit Operate - Handle transitioning the player to the from the
Throne of Destruction level to the Worldstone Chamber level

71 Quest Summit Door Operate - Handle opening the door object based on the
player’s progress of the Rite of Passage quest.

72 Quest Player Last Portal Operate - Handle transitioning the player to
completing the game after completing the Destruction’s End quest

73 Quest Tyrael Portal To Expansion Operate - Handle transitioning the player
to Act 5 after completing the Act 4 Terror’s End quest

PopulateFn - Defines a function that the game will use to spawn this object

Code Description

0 Do not spawn the object

1 Add Clumped Group - Handles creating multiple of these objects randomly in
a room, based on the object’s size and Class. This function only handles
specific object classes such as caskets, urns, and baskets.

2 Add Single Shrine - Handles the creation of a shrine object

3 Add Simple Objects - Handles randomly spawning the object in a room,
based on the object’s size.

4 Add Barrels - Handle creating multiple barrel or exploding barrel Class
objects in a room.

5 Add Crates - Handle creating multiple crate or urn Class objects in a room.

6 Add Corpse - Use function 3 to handle spawning the object. Also call a
random chance to spawn the “Flies” object class on top of the objects that
spawn.

7 Add Staked Corpses - Handles how to specifically spawn the
“RogueCorpse1” and “RogueCorpse2” objects, based on their sizes and the
locations in the room. Also call a random chance to spawn the “Flies” object
class on top of the objects that spawn.

8 Add Well - Handles the creation of one of these objects randomly in a room
based on the object’s size. A level can have a maximum of 4 these objects
that spawn.

9 Add One - Handles the creation of one of these objects randomly in a room
based on the object’s size.

InitFn - Defines a function to control how the object works while active and when initially
activated by a player

Code Description

0 Do nothing

1 ObjectInitShrine - General function for determining which type of Shrine
function to pick for the Shrine object. (See shrines.txt file for a list of shrine
types)

This also uses the “Parm0” field to define the Shrine Type

• If equals 0, default to health shrine

• If equals 1, then use Health Shrine

• If equals 2, then use Mana Shrine

• If equals 3, then pick a random stats shrine with a 10% chance to spawn a
surprise shrine

2 ObjectInitTrappable - Handle a random chance to give the object 1 of the 9
random traps. This random chance depends on the area level’s monster
level.

3 ObjectInitChest - Run function 1, and also determine if the object should be
Locked or not. The random chance to make the object Locked depends on
the area level’s monster level.

4 QuestObjectTowerTomeInit - If The Forgotten Tower quest is active, then set
the object to run in Special 0 Mode.

5 Do nothing

6 QuestObjectStoneInit - Sets the object’s mode to be Opened or Neutral,
depending on the progress with the Portal to Tristram for the Search for Cain
quest.

7 QuestObjectGibbetInit - Sets the object’s mode, depending on the progress
with Cain’s Cage for the Search for Cain quest.

8 ObjectInitDungeonTorch - Sets the object’s mode to Opened

9 Quest Object Inifuss Init - Sets the object’s mode, depending on the progress
with the Tree for the Search for Cain quest.

10 ObjectInitBonfire - If the current level is Act 1 Rogue Encampment, then tell
the object to do a periodic skill, otherwise set the object mode to Opened.

11 ObjectInitTownPortal - Initializes the object’s mode and adds the level ID as
an attribute to keep track of.

12 ObjectInitPermanentPortal - Handles specific level transitions for permanent
portals found throughout the game

13 QuestObjectStoneSoundInit - Attaches the object to the Search for Cain
quest functions

14 ObjectInitDungeonTorch2 - Sets the object’s mode to Operating

15 QuestObjectMalusInit - Attaches the object to the Tools of the Trade quest
functions

16 ObjectInitWell - Sets the object’s attributes for a well including amount of
charges
This also uses the “Parm2” field to define the amount of Life healed

17 ObjectInitWaypoint - Handles setting up the waypoint mechanic to the object
for the current area level

18 QuestObjectJerhyn1Init - Handle where to place Jerhyn (near the palace
entrance) based on Arcane Sanctuary quest progress

19 QuestObjectJerhyn2Init - Handle where to place Jerhyn (inside the palace)
based on The Seven Tombs quest progress

20 QuestObjectTaintedSunAltarInit - Attaches the object to the Tainted Sun
quest functions

21 QuestObjectSevenTombsReceptacleInit - Setup the object to be a receptacle
for the Horadric Staff, based on The Seven Tombs quest progress

22 ObjectInitFire - Setup the object to act as fire

23 QuestObjectLamEsensTomeInit - Attaches the object to the Lam Esen’s
Tome quest functions

24 ObjectInitTrap1 - Handle setting up the object frame count and making sure it
has full stats

25 QuestObjectGidbinnInit - Attaches the object to the Blade of the Old Religion
quest functions

26 TestObjectInit - Sets the object’s mode to Operating

27 ObjectInitTrappablePoison - Sets up the random chance of 333/1000 for the
object to have a trap that creates a poison nova

28 ObjectInitGold - Create a random amount of gold piles (between 1 to 10) in
random locations around the object

29 QuestObjectInitArcanePortal - Setup the object to link area levels between
the Palace Cellar Level 3 and the Arcane Sanctuary

30 QuestObjectHaremBlockerInit - Setup the object’s collision based on the
Arcane Sanctuary quest progress

31 QuestObjectHoradricCubeChestInit - Sets up information about the object

32 QuestObjectHoradricScrollChestInit - Sets up information about the object

33 QuestObjectStaffOfKingsChestInit - Sets up information about the object

34 ObjectInitHellTorch - Randomly set the object’s mode to Operating

35 Return null

36 Return null

37 QuestObjectDurielPassagewayInit - Decide between setting the object’s
mode to Opened or Neutral, based on the progress of the The Seven Tombs
quest

38 QuestObjectTyraelDoorInit - Decide between setting the object’s mode to
Opened or Neutral, based on the progress of the The Seven Tombs quest

39 QuestObjectGidbinnTownAltarInit - Decide between setting the object’s mode
to Opened or Neutral, based on the progress of the The Blade of the Old
Religion quest

40 Return null

41 QuestObjectBeneathTheCityStairsInit - Decide between setting the object’s
mode to Opened or Neutral, based on the progress of the Khalim’s Flail quest

42 QuestObjectBeneathTheCityLeverInit - If the Khalim’s Flail quest is complete,
then set the object’s mode to Opened

43 QuestObjectDarkWandererInit - Create the “darkwanderer” monster and
order to walk to the object’s location. This depends on the players character
save from having witnessed this event before.

44 QuestObjectInitHellGate - Decide between setting the object’s mode to
Opened or Neutral, based on the progress of the The Guardian quest

45 QuestObjectMephistoBridgeInit - Decide between setting the object’s mode to
Opened or Neutral, based on the progress of the The Guardian quest. If the
object is not Opened, then also tell it to do its unique event.

46 ObjectTrappedSoulInit - Determine where to spawn the “trappedsoul1” and
“trappedsoul2” monster classes in the area level.

47 QuestObjectForgottenTowerChestInit - Decide between setting up the chest
object, relying on the Forgotten Tower quest being in progress

48 QuestObjectSoulstoneForgeInit - Decide between setting the object’s mode
to Opened or Neutral, based on the progress of the Hell’s Forge quest

49 QuestObjectHratliStartInit - Handle placing Hratli near the starting point of Act
3, based on the player’s Act 3 prologue progress

50 QuestObjectHratliEndInit - Handle placing Hratli near his forge, if the player
has progressed past the Act 3 prologue

51 ObjectJackInTheBoxInit - If the object is in Opened or Opening mode, then
tell the object to do a periodic item skill event

52 QuestObjectNatalyaInit - Handle placing Natalya at her location based on the
player’s progress of The Guardian quest

53 QuestObjectMephistoDoorInit - Handle setting the object to Opened mode
based on the player’s progress of destroying the orb for The Blackened
Temple quest

54 QuestObjectCainStartInit - Handle creating the Cain unit in the Rogue
Encampment based on the player’s progress of The Search for Cain quest

55 QuestObjectDiabloStartInit - Handle the spawning event of Diablo based on
the player’s progress of activating the seal objects in the Chaos Sanctuary

56 QuestObjectDiabloSealInit - Do nothing

57 ObjectInitBetterChest - Initialize the chest object, and give it the special
magical property

58 ObjectInitFissure - Tell the object to do a periodic skill event at random times

59 ObjectVileDoggieInit - If the object is in Neutral mode, then set the object to
Operating mode and tell it to do a unique event

60 QuestObjectCompellingOrbInit - Set the object to Opened based on the
progress of The Blackened Temple quest

61 QuestObjectCainPortalInit - Set the object to Operating mode and tell it to do
a unique event

62 QuestCagedWussie1Init - Spawn the “act5pow” units based on the player’s
progress of the Rescue on Mount Arreat quest

63 QuestMoeInit - Setup the Korlic statue object with quest data based on the
Right of Passage quest progress

64 QuestLarryInit - Setup the Madawc statue object with quest data based on
the Right of Passage quest progress

65 QuestCurlyInit - Setup the Talic statue object with quest data based on the
Right of Passage quest progress

66 QuestAnyaInsideTownInit - Handle for creating the Anya NPC in town, based
on the progress of the Prison of Ice quest

67 QuestAnyaOutsideTownInit - Handle this object during the progress of the
Prison of Ice quest and tell it to do its unique event

68 QuestNihlathakInsideTownInit - Create the Nihlathak NPC in town, based on
the progress of the Prison of Ice quest

69 QuestNihlathakOutsideTownInit - Create the “Nihlathak Boss” super unique
monster, based on the progress of the Prison of Ice quest

70 QuestLarzukStartInit - Do nothing

71 QuestLarzukEndInit - Object placeholder to create the “Larzuk” NPC in town

72 QuestAncientTomeInit - Set the tome object mode to Opened or Neutral
based on the progress of The Rite of Passage quest

73 QuestAncientGatewayInit - Set the door object mode to Opened or Neutral
based on the progress of The Rite of Passage quest

74 QuestFrozenAnyaInit - Handle this object during the progress of the Prison of
Ice quest and tell it to do its unique event

75 QuestLastExitInit - Set the Throne of Destruction exit object mode to
Operating or Opened based on the progress of the Eve of Destruction quest

76 QuestSummitDoorInit - Set this door object mode to Operating or Opened
based on the progress of the Rite of Passage quest

77 QuestPlayerLastPortalInit - Set the last portal object mode to Operating or
Opened based on the progress of the Eve of Destruction quest

78 QuestTyraelPortalToExpansionInit - Set this object mode to Operating or
Opened based on the progress of the Terror’s End quest

79 QuestZooInit - Attempt a random chance based on successfully selecting a
“zoo” type monster from the entire list of possible monsters (See
monstats.txt). If selected, then send the quest update command to all players,
based on the Eve of Destruction quest.

ClientFn - Defines a function that runs on the object from the game’s client side.

Code Description

0 Do nothing

1 Ambient Sound - Always return true

2 Ripple - Tells the object to randomly play between its Operating
animation and loop back to its Neutral animation

3 Hell Fire - Same as function 2, except sound will also be processed

4 Drinker - Tells the object to randomly play between its Special 0
animation and loop back to its Neutral animation. Also processes
sound.

5 Gesturer - Tells the object to randomly play between its Special 0 /
Special 1 animation and loop back to its Neutral animation. Also
processes sound.

6 Turner - Tells the object to randomly play between its Special 0
animation and loop back to its Neutral animation. Uses different tick
counts than function 4. Also processes sound.

7 Skeleton - Tells the object to randomly play between its Operating
animation and loop back to its Neutral animation.

8 Duriel Entrance - If the object is not in Neutral mode then preload
the Duriel monster

9 Client Smoke - Controls how the object can be removed from the
client based on distance to a player and if the object has a specific
tick count.

10 Bubbles - Tells the object to randomly play between its Operating
animation and loop back to its Neutral animation. Uses different tick
counts than function 7.

11 Floaters - Always return true

12 Altar - If the object is not in Neutral mode then preload the Ancients
statues

13 Invisible Ancient - If the object is in its Neutral mode and the player
operating the object has not completed the Rite of Passage quest,
then handle the control of operating the object

14 Bonfire - Updates the object’s animation modes based on the time of
day

15 Frozen Anya - If the object is in Neutral mode then play the
“npcalert” overlay.

16 Last Exit - If the object is in its Operating mode, then modify the
animation frames

17 Zoo - Handle the creation of monsters if monsters need to be
created

18 Keeper - Randomly play the “barbarian_grunt_small_1” sound

RestoreVirgins - Boolean Field. If equals 1, then when the object has been used, the
game will not restore the object in an inactive state when the area level repopulates
after a player loads back into it. If equals 0, then ignore this.
BlockMissile - Boolean Field. If equals 1, then missiles can collide with this object. If
equals 0, then missiles will ignore and fly through this object.
DrawUnder - Controls the targeting priority of the object

Code Description

0 The object will not change its targeting priority

1 The object’s target priority will equal a corpse only when the object is
opened

2 The object’s target priority always equals a corpse

OpenWarp - Boolean Field. If equals 1, then this object will be classified as an object
that can be opened to warp to another area, and the UI will be notified to display a
tooltip for opening or entering, based on the object’s mode. If equals 0, then ignore this.

AutoMap - Used to display a tile in the Automap to represent the object. Defines which
cell number to use in the tile list for the Automap. If this value equals 0, then this object
will not display on the Automap. (See Automap.txt)

objgroup.txt

Overview

This file controls what group of possible Objects to spawn in a part of an area level.

This file uses the following files: objects.txt

The order of each Object Group defined in this file will convey what ID value it has,
which is referenced by the Levels.txt file
The order of these Object Groups should not be changed

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

GroupName - This is a reference field to define the Object Group name

ID0 (to ID7) - Uses the “Id” field from objects.txt, which assigns an Object to this Object
Group
DENSITY0 (to DENSITY7) - Controls the number of Objects to spawn in the area level.
This is also affected by the Object’s populate function defined by the “PopulateFn” field
from the objects.txt file. The maximum value allowed is 128.
PROB0 (to PROB7) - Controls the probability that the Object will spawn in the area
level. This is calculated in order so the first probability that is successful will be chosen.
This also means that these field values should add up to exactly 100 in total to
guarantee that one of the objects spawn.

objpreset.txt

Overview

This file controls which Objects are preloaded in a preset, based on the Act number

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Index - Assigns a unique numeric ID to the Object Preset so that it can be properly
referenced
Act - Defines the Act number used for each Object Preset. Uses values between 1 to 5.
ObjectClass - Uses the “Class” field from objects.txt, which assigns an Object to this
Object Preset

Overlay.txt

Overview

This file controls the overlay graphics related to states, auras, cast animations, curses,
and buffs

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

overlay - Defines the name of the overlay, used in other data files
Filename - Defines which DCC file to use for the Overlay
version - Defines which game version to use this Overlay (0 = Classic mode | 100 =
Expansion mode)
Character - Used for name categorizing Overlays for unit translation mapping

PreDraw - Boolean field. If equals 1, then display the Overlay in front of sprites. If
equals 0, then display the Overlay behind sprites.
1ofN - Controls how to randomly display Overlays. This value will randomly add to the
current index of the Overlay to possibly use another Overlay that is indexed after this
current Overlay. The formula is as follows: Index = Index + RANDOM(0, [“1ofN”]-1).
Xoffset - Sets the horizontal offset of the overlay on the unit. Positive values move it
toward the left and negative values move it towards the right.
Yoffset - Sets the vertical offset of the overlay on the unit. Positive values move it down
and negative values move it up.
Height1 (to Height4) - These are additional values added to “Yoffset”. Only 1 of these
“Height” fields are added, and which field that gets selected depends on the
“OverlayHeight” field value from monstats2.txt (Example: If the “OverlayHeight” value is
4, then use the “Height4” field). If the “OverlayHeight” value is 0, then ignore these
“Height” fields and add a default value of 75 to “Yoffset”. Player unit types will always
use “Height2”.

AnimRate - Controls the animation frame rate of the Overlay. The value is the number
of frames that will update per second.
LoopWaitTime - Controls the number of periodic frames to wait until redrawing the
Overlay. This only works with Overlays that are a loop type.

Trans - Controls the alpha mode for how the Overlay is displayed, which can affect
transparency and blending

Code Description

0 Transparency at 25%

1 Transparency at 50%

2 Transparency at 75%

3 Black Alpha Transparency

4 White Alpha Transparency

5 No Transparency

6 Dark Transparency (Unused)

7 Highlight Transparency (Used when mousing over the unit)

8 Blended

InitRadius - Controls the starting Light Radius value for the Overlay (Max = 18)
Radius - Controls the maximum Light Radius value for the Overlay. This can only be
greater than or equal to “InitRadius”. If greater than “InitRadius”, then the Light Radius
will increase in size per frame, starting from “InitRadius” until it matches the “Radius”
value (Max = 18)
Red - Controls the Red color gradient of the Light Radius
Green - Controls the Green color gradient of the Light Radius
Blue - Controls the Blue color gradient of the Light Radius

NumDirections - The number of directions in the cell file

LocalBlood - Controls how to display green blood or VFX on a unit.

Code Quest Progress

0 null

1 Transform the default red blood splatter to green blood

2 Change the monster palette to green

pettype.txt

Overview

This file controls the various statistics for each type of pet from all the classes summon
Skills

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

pet type - Defines the name of the pet type, used in the “pettype” column in skills.txt
group - Used as an ID field, where if pet types share the same group value, then only 1
pet of that group is allowed to be alive at any time. If equals 0 (or null), then ignore this.
basemax - This sets a baseline maximum number of pets allowed to be alive when skill
levels are reset or changed.

warp - Boolean field. If equals 1, then the Pet will teleport to the player when the player
teleports or warps to another area. If equals 0, then the pet will die instead.
range - Boolean field. If equals 1, then the Pet will die if the player teleports or warps to
another area and is located more than 40 grid tiles in distances from the Pet. If equals
0, then ignore this.

partysend - Boolean field. If equals 1, then tell the Pet to do the Party Location Update
command (find the location of its Player) when its health changes. If equals 0, then
ignore this.
unsummon - Boolean field. If equals 1, then the Pet can be unsummoned by the
Unsummon skill function. If equals 0, then the Pet cannot be unsummoned.
automap - Boolean field. If equals 1, then display the Pet on the Automap. If equals 0,
then hide the pet on the Automap.

name - String Key. Used to define the Pet’s name on its party frame
drawhp - Boolean field. If equals 1, then display the Pet’s Life bar under the party
frame. If equals 0, then hide the Pet’s Life bar under the party icon.

icontype - Controls the functionality for how to display the Pet Icon and number of Pets
counter

Code Description

0 Do not display the Pet icon

1 Display the Pet icon and do not show the Pet counter

2 Display the Pet icon and show the Pet counter

baseicon - Define which DC6 file to use for the default Pet’s icon in its party frame

mclass1 (to mclass4) - Defines the alternative pet to use for the “pet type” by using
that specific unit’s “hcIdx” from Monstats.txt
micon1 (to micon4) - Defines which DC6 file to use for the related “mclass” Pet’s icon
in its party frame

Properties.txt

Overview

This file defines how item modifiers work. It takes a stat defined from ItemStatCost.txt
and uses a function to handle the stat’s “min”, “max” and “parameter” values.

Used by the following data files: UniqueItems.txt, SetItems.txt, QualityItems.txt, Sets.txt,
Runes.txt

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

code - Defines the property ID. Used as a reference in other data files (this should not
be changed)

func1 (to func7) - Code function used to define the Property. Uses numeric ID values
to define what function to use.

Function
ID

Function Name Parameters
Description

0 null

1

ItemModsSetValueRegular stat
set

• Modify the stat
to be randomly
calculated
between its “min”
and “max” values

• Sets the stat
value to its “max”
value if the item
is High Quality
(Superior)

2
ItemModsSetValueBaseToMax stat

set
Modify the stat to
always be set to its
“max” value

3

ItemModsSetValueRegular2 stat
set

Same as function 1, but
consecutive calls of this
function will use the
same stat value as the
previous call

4

ItemModsSetValueBaseToMax2 stat
set

Same as function 2, but
consecutive calls of this
function will use the
same stat value as the
previous call

5
ItemModsSetMinDamage set Sets the minimum

damage value for an
item

6

ItemModsSetMaxDamage set Sets the maximum
damage value for an
item (dependent on its
minimum value)

7

ItemModsSetDamagePct set Sets the damage
percent of the item
based on its percentage
damage “min” and
“max” values

8

ItemModsSetSpeed stat
set

Modify the stat to be
randomly calculated
between its “min” and
“max” values

9

ItemModsSetSingleSkill stat
set

• Used for
modifying a
single skill level

• Requires the
stat’s “min” and
“max” values for
the skill’s level
modification

• Requires the
stat’s
“parameter”
value for the skill
ID

10

ItemModsSetTabSkills stat
set

• Used for
modifying the
levels of skills
from a skill tab

• The skill tab
level modification
is defined
through the stat’s
value

• The skill tab ID
is defined
through the stat’s
“parameter”
value. The stat’s
“parameter”
value is defined
as the class ID
and the number
of tabs that the
class has:
o 0-2 = Amazon

(Bow and
Crossbow
Skills /
Javelin and
Spear Skills /
Passive and
Magic Skills)

o 3-5 =

Sorceress
(Fire Spells /
Lightning

Spells / Cold
Spells)

o 6-8 =

Necromancer
(Summoning
Spells /
Poison and
Bone Spels /
Curses)

o 9-11 = Paladin

(Combat
Skills /
Defensive
Auras /
Offensive
Auras)

o 12-14 =

Barbarian
(Warcries /
Combat
Masteries /
Combat
Skills)

o 15-17 = Druid

(Shape
Shifting /
Elemental /
Summoning)

o 18-20 =

Assassin
(Traps /
Martial Arts /
Shadow
Disciplines)

11

ItemModsSetSkillOnAttack stat
set

• Used for item
event modifiers
to cast a skill

• Requires the
stat’s param
value as the skill
ID

• Requires the
stat’s “min” value
as the percent
chance to cast

the skill (if 0,
then default to 5)

• Requires the
stat’s “max”
value as the
skill’s level

12

ItemModsSetRandomParam stat
set

• Uses the stat’s
“min” and “max”
value as a
random selection
of the stat’s
“parameter”
value

13

ItemModsSetMaxDurability stat
set

• Modify the stat
to be randomly
calculated
between its “min”
and “max” values

• Sets the stat
value to its “max”
value if the item
is High Quality
(Superior)

• Always sets the
current durability
to its maximum
durability after
the calculation of
the stat value

14

ItemModsSetSockets • Determines the
number of
sockets on an
item

• If the stat has
“min” and “max”
values, then
calculate a
random number
of sockets
between these
values.
Otherwise, use
the stat’s
“parameter”
value as the

number of
sockets

• The max
number of
sockets depends
on the stat’s
“max” size, the
item’s inventory
grid size, or the
hard cap of 6
sockets
maximum

15

ItemModsSetMin stat
set

• Always use the
stat’s “min” value

• If the stat is
physical
minimum
damage, then
set the item’s
minimum
damage to the
stat’s value.
Otherwise,
simply set the
stat’s value to its
“min” value.

16

ItemModsSetMax stat
set

• Always use the
stat’s “max”
value

• If the stat is
physical
maximum
damage, then
set the item’s
maximum
damage to the
stat’s value.
Otherwise,
simply set the
stat’s value to its
“max” value.

17

ItemModsSetParam stat
set

• Use the stat’s
“parameter”
value.
Otherwise,
calculate a

random value
between the
stat’s “min” and
“max” value.
Otherwise, use
0.

• If the stat is
physical
maximum
damage, then
set the item’s
maximum
damage to the
stat’s value

18

ItemModsSetByTime stat • Modifies the stat
based on the
current game’s
time of day, and
the stat’s
preferred time
period. The
closer the
current game’s
time of day is to
the stat’s
preferred time
period, then the
stronger the
stat’s value will
be, based on its
“min” and “max”
values

• Requires the
stat’s
“parameter”
value as the time
period. The
allowed time
periods are:

o 0 = Day

o 1 = Dusk

o 2 = Night

o 3 = Dawn

19
ItemModsSetChargedSkill stat • Used for

creating a stat

for a charged
skill.

• Requires the
stat’s
“parameter”
value as the skill
ID

• Requires the
stat’s “min” value
to calculate the
value
MaxCharges
(maximum
number of
charges)
o If that value

equals 0,
then default
to 5 max
charges

o If that value is

less than 0,
then equal to
the following
calculation:
MaxCharges
=
|MaxCharges|
+
|MaxCharges|
* [CURRENT
ITEM LEVEL]
/ 8

o MaxCharges

cannot
exceed 255

• Requires the
stat’s “max”
value as the
skill’s level

• The spawned
number of
charges is
calculated as the
following:

o Random(0 and

(MaxCharges
-
MaxCharges
/ 8)) +
MaxCharges
/ 8 + 1

20
ItemModsSetIndestructible Adds the Indestructible

stat to an item

21

ItemModsSetValueRegPropValParam stat
set
val

Modify the stat to be
randomly calculated
between its “min” and
“max” values and use
the Property “val” value
to offset the stat ID

22

ItemModsSetValueRegParam stat
set

Modify the stat to be
randomly calculated
between its “min” and
“max” values and use
the stat’s “parameter”
value to offset the stat
ID

23

ItemModsSetEthereal Used to add the
Ethereal stat to an item,
only if the item has
Durability

24

ItemModsSetParamAndValue stat
set

• Modify the stat’s
value to be
randomly
calculated
between its “min”
and “max” values
and use the
stat’s
“parameter”
value to offset
the stat ID

• Consecutive
calls of this
function will use
the same stat
value as the
previous call

25 to 35 null null

36
ItemModsSetValueRegPropValParamSwapped stat

set
• Switches the

usage of the

val Property “val”
value with the
stat’s value

• The Property
“val” value is
used as the stat
value

• The stat’s value
(based on its
“min” and “max”
values) is used
at the Property
“val” value

stat1 (to stat7) - Stat applied by the property. Used by the “func” field as a possible
parameter (uses “Stat” value from ItemStatCost.txt). A stat is comprised of a “min” and
“max” value which it uses to calculate the actual numeric value. Stats also can have a
“parameter” value, depending on its function.

set1 (to set7) - Boolean field. Used by the “func” field as a possible parameter. If equals
1, then set the stat value regardless of its current value. If equals 0, then add to the stat
value.

val1 (to val7) - Integer field. sed by the “func” field as a possible input parameter for
additional function calculations

QualityItems.txt

Overview

This file controls the groups item modifiers for High Quality (Superior) item types.

The game will randomly choose between one of these High Quality groups, if it is
allowed for the item type.

Data Fields

mod1code & mod2code - Controls the item properties that are added to the item
(Uses the “code” field from Properties.txt)
mod1param & mod2param - The stat’s “parameter” value associated with the related
property (mod#code). Usage depends on the property function (See the “func” field on
Properties.txt)
mod1min & mod2min - The stat’s “min” value to assign to the related property
(mod#code). Usage depends on the property function (See the “func” field on
Properties.txt)

mod1max mod2max - The stat’s “max” value to assign to the related property
(mod#code). Usage depends on the property function (See the “func” field on
Properties.txt)

armor - Boolean Field. If equals 1, then allow this High Quality (Superior) modifier to be
applied on both torso armor and helmet item types. If equals 0, then ignore this.
weapon - Boolean Field. If equals 1, then allow this High Quality (Superior) modifier to
be applied on melee weapon item types (except scepters, wands, and staves). If equals
0, then ignore this.
shield - Boolean Field. If equals 1, then allow this High Quality (Superior) modifier to be
applied on shield item types. If equals 0, then ignore this.
scepter - Boolean Field. If equals 1, then allow this High Quality (Superior) modifier to
be applied on scepter item types. If equals 0, then ignore this.
wand - Boolean Field. If equals 1, then allow this High Quality (Superior) modifier to be
applied on wand item types. If equals 0, then ignore this.
staff - Boolean Field. If equals 1, then allow this High Quality (Superior) modifier to be
applied on staff item types. If equals 0, then ignore this.
bow - Boolean Field. If equals 1, then allow this High Quality (Superior) modifier to be
applied on bow or crossbow item types. If equals 0, then ignore this.
boots - Boolean Field. If equals 1, then allow this High Quality (Superior) modifier to be
applied on boots item types. If equals 0, then ignore this.
gloves - Boolean Field. If equals 1, then allow this High Quality (Superior) modifier to
be applied on gloves item types. If equals 0, then ignore this.
belt - Boolean Field. If equals 1, then allow this High Quality (Superior) modifier to be
applied on belt item types. If equals 0, then ignore this.

RarePrefix.txt

Overview

This file controls the list of strings that are randomly selected to be used as the prefix
part of the name when generating Rare items

Rare Prefixes are chosen at random from the list define in the data file

These item affixes will appear at the start of a Rare item’s name

Data Fields

name - Uses a string key to define the Rare Prefix name
version - Defines which game version to use this Set bonus (0 = Classic mode | 100 =
Expansion mode)

itype1 (to itype7) - Controls what item types are allowed for this Rare Prefix to spawn
on (Uses the ID field from ItemTypes.txt)
etype1 (to etype4) - Controls what item types are excluded for this Rare Prefix to
spawn on (Uses the ID field from ItemTypes.txt)

RareSuffix.txt

Overview

This file controls the list of strings that are randomly selected to be used as the suffix
part of the name when generating Rare items

Rare Suffixes are chosen at random from the list define in the data file

These item affixes will appear at the end of a Rare item’s name

Data Fields

name - Uses a string key to define the Rare Suffix name
version - Defines which game version to use this Set bonus (0 = Classic mode | 100 =
Expansion mode)

itype1 (to itype7) - Controls what item types are allowed for this Rare Suffix to spawn
on (Uses the ID field from ItemTypes.txt)
etype1 (to etype4) - Controls what item types are excluded for this Rare Suffix to
spawn on (Uses the ID field from ItemTypes.txt)

Runes.txt

Overview

This file controls the creation of Rune Words and their various modifiers.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Name - Controls the string key that is used to the display the name of the item when the
Rune Word is complete

complete - Boolean field. If equals 1, then the Rune Word can be crafted in-game. If
equals 0, then the Rune Word cannot be crafted in-game.
server - Boolean field. If equals 1, then the Rune Word can only be crafted on Ladder
realm games. If equals 0, then the Rune Word can be crafted in all game types.

itype1 (to itype6) - Controls what item types are allowed for this Rune Word (Uses the
ID field from ItemTypes.txt)
etype1 (to etype3) - Controls what item types are excluded for this Rune Word (Uses
the ID field from ItemTypes.txt)
Rune1 (to Rune6) - Controls what runes are required to make the Rune Word. The
order of each of these fields matters. (Uses the ID field from misc.txt)

T1Code1 (to T1Code7) - Controls the item properties that the Rune Word provides
(Uses the “code” field from Properties.txt)
T1Param1 (to T1Param7) - The stat’s “parameter” value associated with the related
property (T1Code). Usage depends on the property function (See the “func” field on
Properties.txt)
T1Min1 (to T1Min7) - The stat’s “min” value to assign to the related property (T1Code).
Usage depends on the property function (See the “func” field on Properties.txt)
T1Max1 (to T1Max7) - The stat’s “max” value to assign to the related property
(T1Code). Usage depends on the property function (See the “func” field on
Properties.txt)

SetItems.txt

Overview

This file controls the item modifiers for each Set item in a Set

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

index - Links to a string key for displaying the Set item name
set - Defines the Set to link to this Set Item (must match the “index” field from Sets.txt)
item - Defines the baseline item code to use for this Set item (must match the “code”
field value from weapons.txt, armor.txt, or misc.txt)
rarity - Modifies the chances that this Unique item will spawn compared to the other Set
items. This value acts as a numerator and a denominator. Each “rarity” value gets
summed together to give a total denominator, used for the random roll for the item. For
example, if there are 3 possible Set items, and their “rarity” values are 3, 5, 7, then their

chances to be chosen are 3/15, 5/15, and 7/15 respectively. (The minimum “rarity” value
equals 1)

lvl - The item level for the item, which controls what object or monster needs to be in
order to drop this item
lvl req - The minimum character level required to equip the item

chrtransform - Controls the color change of the item when equipped on a character or
dropped on the ground. If empty, then the item will have the default item color. (Uses
Color Codes from the reference file colors.txt)

Code Color

 No color change

whit White

lgry Light Grey

dgry Dark Grey

blac Black

lblu Light Blue

dblu Dark Blue

cblu Crystal Blue

lred Light Red

dred Dark Red

cred Crystal Red

lgrn Light Green

dgrn Dark Green

cgrn Crystal Green

lyel Light Yellow

dyel Dark Yellow

lgld Light Gold

dgld Dark Gold

lpur Light Purple

dpur Dark Purple

oran Orange

bwht Bright White

invtransform - Controls the color change of the item in the inventory UI. If empty, then
the item will have the default item color. (Uses Color Codes from the reference file
colors.txt)

Code Color

 No color change

whit White

lgry Light Grey

dgry Dark Grey

blac Black

lblu Light Blue

dblu Dark Blue

cblu Crystal Blue

lred Light Red

dred Dark Red

cred Crystal Red

lgrn Light Green

dgrn Dark Green

cgrn Crystal Green

lyel Light Yellow

dyel Dark Yellow

lgld Light Gold

dgld Dark Gold

lpur Light Purple

dpur Dark Purple

oran Orange

bwht Bright White

invfile - An override for the “invfile” field from the weapon.txt, armor.txt, or misc.txt files.
By default, the Set Item will use what was defined by the baseline item from the “item”
field.
flippyfile - An override for the “flippyfile” field from the weapon.txt, armor.txt, or misc.txt
files. By default, the Set Item will use what was defined by the baseline item from the
“item” field.

dropsound - An override for the “dropsound” field from the weapon.txt, armor.txt, or
misc.txt files. By default, the Set Item will use what was defined by the baseline item
from the “item” field.
dropsfxframe - An override for the “dropsfxframe” field from the weapon.txt, armor.txt,
or misc.txt files. By default, the Set Item will use what was defined by the baseline item
from the “item” field.
usesound - An override for the “usesound” field from the weapon.txt, armor.txt, or
misc.txt files. By default, the Set Item will use what was defined by the baseline item
from the “item” field.

cost mult - Multiplicative modifier for the Set item’s buy, sell, and repair costs
cost add - Flat integer modification to the Set item’s buy, sell, and repair costs. This is
added after the “cost mult” has modified the costs.

add func - Controls how the additional Set item properties (aprop#a & aprob#b) will
function on the Set item based on other related set items are equipped

Code Description

0
(or empty)

Additional Set item properties will function like normal item properties,
ignoring the Set

1 Additional Set item properties will be added depending on which specific
Set item is equipped. Each Set item has their own index depending on
their order in data and the “set” they belong to. For example, if a Set item
is defined first in the list, that that it has the index equal to 1, which

means this function will make “aprop1a” and “aprop1b” fields only be
added to a Set Item when that specific Set item of index 1 is equipped.

2 Additional Set item properties will be added depending the number of
related Set items equipped. For example, if 2 Set items are equipped,
then the “aprop1a”, “aprop1b”, “aprop2a”, and “aprop2b” fields will be
added to the Set item.

prop1 (to prop9) - Controls the item properties that are add baseline to the Set Item
(Uses the “code” field from Properties.txt)
par1 (to par9) - The stat’s “parameter” value associated with the related property
(prop#). Usage depends on the property function (See the “func” field on Properties.txt)
min1 (to min9) - The stat’s “min” value to assign to the related property (prop#). Usage
depends on the property function (See the “func” field on Properties.txt)
max1 (to max9) - The stat’s “max” value to assign to the related property (prop#).
Usage depends on the property function (See the “func” field on Properties.txt)

aprop1a (to aprop5a) - Controls the item properties that are added to the Set Item
when other pieces of the Set are also equipped (Uses the “code” field from
Properties.txt)
apar1a (to apar5a) - The stat’s “parameter” value associated with the related property
(aprop#a). Usage depends on the property function (See the “func” field on
Properties.txt)
amin1a (to amin5a) - The stat’s “min” value to assign to the related property (aprop#a).
Usage depends on the property function (See the “func” field on Properties.txt)
amax1a (to amax5a) - The stat’s “max” value to assign to the related property
(aprop#a). Usage depends on the property function (See the “func” field on
Properties.txt)

aprop1b (to aprop5b) - Controls the item properties that are added to the Set Item
when other pieces of the Set are also equipped. Each of these numbered fields are
paired with the related “aprop#a” field as an additional item property. (Uses the “code”
field from Properties.txt)
apar1b (to apar5b) - The stat’s “parameter” value associated with the related property
(aprop#b). Usage depends on the property function (See the “func” field on
Properties.txt)
amin1b (to amin5b) - The stat’s “min” value to assign to the related property (aprop#b).
Usage depends on the property function (See the “func” field on Properties.txt)
amax1b (to amax5b) - The stat’s “max” value to assign to the related property
(aprop#b). Usage depends on the property function (See the “func” field on
Properties.txt)

worldevent - Boolean Field. If equals 1, then this item can be used to trigger the Uber
Diablo world event when it is sold to an NPC. If equals 0, then ignore this.

Sets.txt

Overview

This file controls the item modifiers for Set bonus statistics when the player has
equipped enough Set Items

Data Fields

index - Defines the specific Set ID
name - Uses a string for displaying the Set name in the inventory tooltip
version - Defines which game version to use this Set bonus (0 = Classic mode | 100 =
Expansion mode)

PCode2a (to PCode5a) - Controls the each of the different pairs of Partial Set item
properties. These are applied when the player has equipped the related # of Set items.
This is the first part of the pair for each Partial Set bonus. (Uses the “code” field from
Properties.txt)
PParam2a (to PParam5a) - The stat’s “parameter” value associated with the relative
property (PCode#a). Usage depends on the property function (See the “func” field on
Properties.txt)
PMin2a (to PMin5a) - The stat’s “min” value associated with the listed relative
(PCode#a). Usage depends on the property function (See the “func” field on
Properties.txt)
PMax2a (to PMax5a) - The stat’s “max” value to assign to the listed relative (PCode#a).
Usage depends on the property function (See the “func” field on Properties.txt)

PCode2b (to PCode5b) - Controls the each of the different pairs of Partial Set item
properties. These are applied when the player has equipped the related # of Set items.
This is the second part of the pair for each Partial Set bonus. (Uses the “code” field from
Properties.txt)
PParam2b (to PParam5b) - The stat’s “parameter” value associated with the relative
property (PCode#b). Usage depends on the property function (See the “func” field on
Properties.txt)
PMin2b (to PMin5b) - The stat’s “min” value associated with the listed relative
(PCode#b). Usage depends on the property function (See the “func” field on
Properties.txt)
PMax2b (to PMax5b) - The stat’s “max” value to assign to the listed relative
(PCode#b). Usage depends on the property function (See the “func” field on
Properties.txt)

FCode1 (to FCode8) - Controls the each of the different Full Set item properties. These
are applied when the player has all Set item pieces equipped (Uses the “code” field
from Properties.txt)
FParam1 (to FParam8) - The stat’s “parameter” value associated with the relative
property (FCode#b). Usage depends on the property function (See the “func” field on
Properties.txt)
FMin1 (to FMin8) - The stat’s “min” value associated with the listed relative (FCode#b).
Usage depends on the property function (See the “func” field on Properties.txt)
FMax1 (to FMax8) - The stat’s “max” value to assign to the listed relative (FCode#b).
Usage depends on the property function (See the “func” field on Properties.txt)

shrines.txt

Overview

This file controls the functionalities of shrine objects found in area levels

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Name - This is a reference field to define the Shrine index

Code - Code function used to define the Shrine’s function. Uses ID values to define
what function to use.

Code
ID

Parameter Description

0 None

1 Gain full Life and Mana

2 Gain full Life

3 Gain full Mana

4 Arg0 = Life percent
consumed
Arg1 = Mana percent
added

Exchange your current Life to restore Mana

5 Arg0 = Mana percent
consumed
Arg1 = Life percent
added

Exchange your current Mana to restore Life

6 Arg0 = Defense
percent

Increases Defense

7 Arg0 = Attack Rating
percent
Arg1 = Physical
Damage percent

Increases Physical Damage and Attack Rating

8 Arg0 = Resist Fire
percent

Increases Fire Resistance

9 Arg0 = Resist Cold
percent

Increases Cold Resistance

10 Arg0 = Resist
Lightning percent

Increases Lightning Resistance

11 Arg0 = Resist Poison
percent

Increases Poison Resistance

12 Arg0 = Bonus Skill
Levels

Increases all Skill levels

13 Arg0 = Mana
Recharge percent

Increases Mana Recharge Rate

14 Arg0 = Stamina
percent

Gain infinite Stamina

15 Arg0 = Bonus
Experience percent

Temporarily gain bonus Experience from kills

16 Temporarily reverse your character's Name (Not
Used)

17 Create a neutral Town Portal back to the current
Act Town

18 Randomly select a gem in your inventory and
upgrade its level (Otherwise, create a random
chipped gem)

19 Arg0 = Life percent
damage
Arg1 = Range to find
units

Release a nova of fireballs that cause any player or
monster to lose a percentage of Life

20 Causes the nearest monster to upgrade a Unique
or Champion type

21 Arg0 = Minimum
potions
Arg1 = Maximum
potions

Deal Fire damage to nearby monsters and create a
random number of Exploding Potions

22 Arg0 = Minimum
potions
Arg1 = Maximum
potions

Create Poison Gas that damages nearby monsters
and create a random number of Choking Gas
Potions

Arg0 & Arg1 - Integer value used as a possible parameter for the “Code” function

Duration in frames - Duration of the effects of the Shrine (Calculated in Frames, where
25 Frames = 1 Second)
reset time in minutes - Controls the amount of time before the Shrine is available to
use again. Each value of 1 equals 1200 Frames or 48 seconds. A value of 0 means that
the Shrine is a one-time use.

StringName - Uses a string to display as the Shrine’s name
StringPhrase - Uses a string to display as the Shrine’s activation phrase when it is
used
effectclass - Used to define the Shrine’s archetype which is involved with calculating
region stats
LevelMin - Define the earliest area level where the Shrine can spawn. Area levels are
determined from levels.txt

skills.txt

Overview

This file controls all skill functionalities. Skills are abilities used by all units in the game.

This file uses many other data files, and other data files will reference fields in this file to
verify certain functionalities.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

skill - Defines the unique name ID for the skill, which is how other files can reference
the skill. The order of the defined skills will determine their ID numbers, so they should
not be reordered.

charclass - Assigns the skill to a specific character class which affects how skill item
modifiers work and what skills the class can learn.

Code Description

ama Amazon

bar Barbarian

pal Paladin

nec Necromancer

sor Sorceress

dru Druid

ass Assassin

skilldesc - Controls the skill’s tooltip and general UI display. Points to a “skilldesc” field
in the skilldesc.txt file.

srvstfunc - Server Start function. This controls how the skill works when it is starting to
cast, on the server side. This uses a code value to call a function, affecting how certain
fields are used.

Code Parameters Description

0 Do nothing

1 StartAttack - Check that the attack is melee or ranged. If
the attack is ranged, then verify the ammunition.

2 StartKick - Calculate the damage and attack the target
unit with a Hand-To-Hand hit class.

3 StartUnsummon - Validate that the target unit is not a
monster or player and that the unit is owned by the
caster unit. Check that the pet can be unsummoned
(See “unsummon” in pettype.txt)

4 AmaStartCheckQuantity - Verify that the caster unit has
enough weapon ammunition

5 calc1
calc4

AmaStartJab - Validate the target enemy unit and attack
it. Use “calc1” to control the percentage increase for
physical damage dealt. Use “calc4” to control the
percent of damage converted to elemental, if the
“Etype” field is used.

6 calc1
calc4

AmaStartPowerStrike - Validate the target enemy and
attempt to attack it. Use “calc1” to control the
percentage increase for physical damage dealt. Use
“calc4” to control the percent of damage converted to
elemental, if the “Etype” field is used.

7 calc1
calc2
calc3
calc4

AmaStartImpale - Validate the target enemy and
attempt to attack it. Use “calc1” to control the
percentage increase for physical damage dealt. Use
“calc4” to control the percent of damage converted to
elemental, if the “Etype” field is used. Use “calc2” to
control the percent chance of losing weapon durability.
Use “calc3” to control the flat amount of durability lost.

8 aurarangecalc
calc1
calc3

AmaStartStrafe - Attempt to find nearby valid targets
and shoot them. Use “aurarangecalc” to control the
range to find targets. Use “calc1” and “calc3” to control
the minimum and maximum amount of shots fired.

9 calc1 AmaStartFend - Find a valid target to attack in melee
and then perform multiple attacks to nearby enemies.
Use “calc1” to control the max targets to attack.

10 calc1
calc4

AmaStartLightningStrike - Validate the target enemy
and attempt to attack it to deal a random amount of
lightning damage. Use “calc1” to control the percentage
increase for damage dealt. Use “calc4” to control the
percent of damage converted to elemental, if the
“Etype” field is used.

11 srvmissilea
calc1
calc2

SorStartInferno - Continuously create missiles while the
caster has the “inferno” state, and adjust the animations
and modes based on the inferno frames. Use “calc1” to
control the range of the missile. Use “calc2” to control
the monster channel duration.

12 aurarangecalc SorStartTelekinesis - Validate the range distance and
the target type

13 SorStartThunderStorm - Validate the skill use and setup
targeting parameters

14 SorStartHydra - Validate the target location

15 NecStartRaiseSkeleton - Check for a valid target corpse
that can be raised

16 calc1
calc4

NecStartPoisonDagger - Validate the target enemy and
attempt to attack it. Use “calc1” to control the
percentage increase for physical damage dealt. Use
“calc4” to control the percent of damage converted to
elemental, if the “Etype” field is used.

17 NecStartCorpseExplosion - Check for a valid target
corpse that can explode

18 NecStartAttract - Return true

19 NecStartBonePrison - Validate that the target is an
enemy and make sure that the target is not located in
town

20 NecStartIronGolem - Validate that the target is an
identified item located on the ground

21 NecStartRevive - Check for a valid target corpse that
can be revived

22 AssStartPsychicHammer - Check for a valid target
player or monster

23 AssStartProgressiveAttack - Validate that the caster unit
can melee attack the target enemy

24 calc1
Param1
Param2

AssStartDragonTalon - Validate that the caster unit can
melee attack the target enemy. Use “calc1” to control
the number of attacks. Use “Param1” and “Param2” to
control the physical damage bonus.

25 AssStartDragonClaw - Validate the target enemy

26 aurastate
aurastat1
srvmissilea
srvmissileb
srvmissilec
prgcalc1
prgcalc2
prgcalc3

AssStartBladeFury - Use the “srvmissilea” missile by
default, or use 1 of the 3 missiles depending on the
progressive charges controlled by the “aurastate” field
and “aurastat1” fields. If the caster unit does not have
the “inferno” state, then add it and handle the animation
frames. If the caster unit does have the “inferno” state,
then periodically create missiles. Use the progressive
calculation fields based on the number of charges to
control the delay between creating missiles.

27 Param4
Param8

AssStartDragonTail - Validate the target to attack and
calculate the kick damage. Use “Param4” to control the
attack speed. Use “Param8” to control if the attack
should always hit.

28 aurastate
aurastat1
srvmissilea
srvmissileb
srvmissilec
auralencalc

AssStartBladeShield - Use the “srvmissilea” missile by
default, or use 1 of the 3 missiles depending on the
progressive charges controlled by the “aurastate” field
and “aurastat1” fields. Add the “aurastate” state that
lasts a duration controlled by “auralencalc”.

29 calc1
calc4

PalStartSacrifice - Validate the target enemy unit and
determine if the caster unit can melee attack it. Use
“calc1” to control the percentage increase for physical
damage dealt. Use “calc4” to control the percent of
damage converted to elemental, if the “Etype” field is
used.

30 Do nothing

31 calc2 PalStartCharge - Validate the target enemy unit and
determine if the caster unit can melee attack it. Adjust
the caster unit’s movement speed. Do special
adjustments for the “duriel” and “clawviper1” monster
attack modes. Use “calc2” to add bonus movement
speed percentage while charging.

32 aurastate
calc1
calc2
calc3
calc4

BarStartBash - Validate the target enemy and attack it.
Use “calc1” to control the physical damage percent
increase. Use “calc2” to control the flat damage
increase. Use “calc3” to control the attack speed bonus.
Use “calc4” to control the percent of damage converted
to elemental, if the “Etype” field is used.

33 BarStartFindHeart - Check for a valid target corpse that
can spawn potions. This relies on the “soft” and “noSel”
flags from the monstats2.txt file.

34 BarStartFindItem - Check for a valid target corpse that
can spawn items. This relies on the “soft” and “noSel”
flags from the monstats2.txt file.

35 calc1
calc2
calc3

PalStartVengeance - Validate the target enemy and
attack it. Use the calculation fields to control fire, cold,
and lightning damage percentages added to the attack.

36 PalStartHolyShield - Check that the player has a shield
equipped

37 calc1 AmaStartFend2 - Find nearby enemy targets to melee
attack. Use “calc1” to control the maximum number of
targets to attack.

38 aurastate
auralencalc

BarStartWhirlwind - Stop any skills and validate the
target location. Modify the caster unit’s collision to only
collide with walls and objects and save the target
location. Apply the “aurastate” state with the length
controlled.

39 aurastate
calc1
calc2
calc4

BarStartBerserk - Validate the target enemy unit and
determine if the caster unit can melee attack it. Use
“calc1” to control the percentage increase for physical
damage dealt. Use “calc4” to control the percent of
damage converted to elemental, if the “Etype” field is
used. Use “calc2” to control the duration for how long
the caster unit has the state.

40 aurarangecalc BarStartLeap - Adjust the caster unit collision, validate
the target location, and store the location in a
parameter. If the caster unit is in a monster, then handle
how the monster can attack the target while leaping.

41 BarStartLeapAttack - Adjust the caster unit collision,
validate the target location, and store the location in a
parameter. Make the caster unit uninterruptable after
landing in order to melee attack a nearby target.

42 MonStartFirehit - If the caster unit is a player, then use
the BarStartBash function (Code 32). Otherwise make
the caster attack the target while in “Skill 1” mode and
deal damage

43 MonStartMagottEgg - Make the unit unattackable,
unselectable, and unable to be hit by missiles

44 MonStartMaggotUp - Set the unit to have ground
collision and adjust the collision and pathing. Teleport
the unit to a viable location in the area.

45 MonStartMaggotDown - Make the unit unattackable,
unselectable, and unable to be hit by missiles. Adjust
the unit’s collision to not have pathing.

46 MonStartAndariel - Validate the target unit and store the
target’s location in a parameter

47 calc1 MonStartJump - Validate the target location. Return
false if the caster unit has the “freeze” state. Use the
“calc1” field to control the damage percent bonus. Make
the caster unit attack the target, if possible.

48 MonStartSwarmMove - Find and validate a path to the
target.

49 MonStartNest - Validate the caster unit’s location and
modify its collision

50 MonStartQuickStrike - Validate the target unit and
attack it

51 MonStartSubmerge - Make the unit unattackable,
unselectable, and unable to be hit by missiles

52 MonStartEmerge - Make the unit unattackable,
unselectable, and unable to be hit by missiles

53 calc2 MonStartDiabLight - Add the “inferno” state to the caster
unit. Use “calc2” to control the number of frames to add
to the animation while channeling and save it in a
parameter.

54 MonStartDiabRun - Validate the target unit and save its
location in parameters

55 calc1
calc2

MonStartMosquito - Validate the target unit and use the
calculation fields to control the minimum and maximum
number of animation loops for the skill.

56 calc1
calc4

DruStartChargeUpAttack - Validate the target enemy
and attempt to attack it. Use “calc1” to control the
percentage increase for physical damage dealt. Use
“calc4” to control the percent of damage converted to
elemental, if the “Etype” field is used.

57 aurastate
calc1
calc4

DruStartRabies - Validate the target enemy and attempt
to attack it. Use “calc1” to control the percentage
increase for physical damage dealt. Use “calc4” to
control the percent of damage converted to elemental, if
the “Etype” field is used. Validate the “aurastate” state.

58 calc1 DruStartFireClaws - Validate the target enemy and
attempt to attack it. Use “calc1” to control the
percentage increase for physical damage dealt.

59 calc1 MonStartImpInferno - Add the “inferno” state to the
caster unit. Use “calc1” to control the number of frames
to add to the animation while channeling and save it in a
parameter.

60 calc1
calc2
calc3

MonStartBatSuckBlood - Validate the target enemy and
attempt to attack it. Use “calc1” to control the damage
penalty percentage. Use “calc2” to control the life steal
percent. Use “calc3” to control the mana steal percent.

61 MonStartSelfResurrect - Validate that the caster unit is
a monster, then resurrect the monster, making it have
proper pathing, be attackable, selectable, and able to be
hit by missiles.

62 MonStartSpawner - Save the monster’s position, class,
and mode as parameters

63 srvmissilea MonStartCorpseCycler - Validate that the caster unit is
a monster. Check for the “noSel” state on the target
(see monstats2.txt) or add it on the target. Create the
missile at the target location and corpse explode the
corpse on the client.

64 MonStartFrenzy - Validate that the target is an enemy

65 StartThrow - Validate that the caster unit has enough
ammunition and durability

66 auraevent1
auraeventfunc1
auraevent2
auraeventfunc2
auraevent3
auraeventfunc3

ApplyPassiveAuraEvents - Check each of the aura
events on the skill and apply the event handler to use
the aura event functions

srvdofunc - Server Do function. This controls how the skill works when it finishes being
cast, on the server side. This uses a code value to call a function, affecting how certain
fields are used.

Code Parameters Description

0 Do nothing

1 DoAttack - If using a ranged weapon, then launch the
weapon’s missile. Otherwise, perform a standard melee
attack to deal damage.

2 srvoverlay
aurastate
auratargetstate
auralencalc

DoApplyDamage - Apply the overlay on the target unit
when dealing damage. Apply the “auratargetstate” state on
the target, if possible, with “auralencalc” controlling its
duration. Apply the “aurastate” state on the caster unit, if
possible.

3 DoThrow - Check that primary equipped weapon is a
throwing weapon and handle launching the weapon’s
missile

4 DoUnsummon - Remove the pet from the caster owner

5 DoLeftThrow - Check that non-primary equipped weapon is
a throwing weapon and handle launching the weapon’s
missile

6 auratargetstate
auralencalc
aurarangecalc

AmaDoInnerSight - Apply the “auratargetstate” state to all
units in the area with a radius controlled by
“aurarangecalc”, that lasts a duration controlled by
“auralencalc”. The state can use any of the aura stats and
their related calculation values.

7 calc1
calc4

AmaDoJab - Attempt to attack the target unit. Use “calc1” to
control the percent increase for physical damage dealt. Use
“calc4” to control the percent of damage converted to
elemental, if the “Etype” field is used.

8 srvmissilea
srvmissileb
calc1
calc2
calc3

AmaDoMultipleShot - Shoot a number of missiles toward a
target location. If the weapon class is a bow then use
“srvmissilea”, otherwise use “srvmissileb” as the missile to
create. Use “calc1” to control the number of missiles
created. Use “calc2” to control the activation frame for each
missile created. Use “calc3” to control the number of
triggering missiles.

9 aurastate
auralencalc
calc1
calc4

BarDoFrenzy - Attack with both weapons on a target or to
nearby targets. Add the “aurastate” state to the caster unit,
with a duration controlled by “auralencalc”. Use “calc1” to
control the percentage increase for physical damage dealt.
Use “calc4” to control the percent of damage converted to
elemental, if the “Etype” field is used.

10 srvmissilea
srvmissileb
calc1

AmaDoGuidedArrow - Shoot a missile that will change its
path to find a nearby target to hit. If the weapon class is a
bow then use “srvmissilea”, otherwise use “srvmissileb” as
the missile to create. Use “calc1” to control the physical
damage dealt by the missile.

11 aurastate
aurastat1
srvmissilea
srvmissileb
srvmissilec
calc1

AmaDoChargedStrike - Create the number of missiles with
randomized pathing. Use the “srvmissilea” missile by
default, or use 1 of the 3 missiles depending on the
progressive charges controlled by the “aurastate” field and
“aurastat1” fields. Use “calc1” to control the number of
missiles created.

12 aurarangecalc
srvmissilea
srvmissileb
calc2
Param6

AmaDoStrafe - Use “aurarangecalc” to control the range to
find a target. If the weapon class is a bow then use
“srvmissilea”, otherwise use “srvmissileb” as the missile to
create. Use “calc2” to control the percent increase for
physical damage dealt. Use “Param6” to control what
percent within the entire animation to trigger rolling back the
loop within the animation.

13 calc1
calc4
Param2

AmaDoFend - Attempt to attack the target unit or nearby
enemies with multiple attacks. Use “calc1” to control the
percent increase for physical damage dealt. Use “calc4” to
control the percent of damage converted to elemental, if the
“Etype” field is used. Use “Param2” to control what percent
within the entire animation to trigger rolling back the loop
within the animation.

14 aurastate
aurastat1
srvmissilea
srvmissileb
srvmissilec
calc1
calc2

AmaDoLightningStrike - Damage the target and create a
missile that bounces to different targets. Use the
“srvmissilea” missile by default, or use 1 of the 3 missiles
depending on the progressive charges controlled by the
“aurastate” field and “aurastat1” fields. Use “calc1” to
control the range of the missile to find a nearby target. Use
“calc2” top control the number target chain jump hits for the
missile.

15 pettype
calc2
calc3

AmaDoDopplezon - Create a pet unit that is a duplicate of
the caster unit. Use “calc1” to control the life percent of the
pet. Use “calc3” to control the Life percent increase on the
pet unit based on the caster’s Life. Use “calc2” to control
the duration that the pet exists. Apply the
“dopllezon_appear” overlay on the pet.

16 pettype
calc1
calc2

AmaDoValkyrie - Create a pet unit with generated item
equipment and stats. Use “calc1” to control the life percent
of the pet. Use “calc2” to control the item level for the
generated items on the pet.

17 aurastate
aurastat1
srvmissilea
srvmissileb
srvmissilec
calc1

SorDoChargedBolt - Create a number of missiles that have
a randomized path. Use the “srvmissilea” missile by default,
or use 1 of the 3 missiles depending on the progressive
charges controlled by the “aurastate” field and “aurastat1”
fields. Use “calc1” to control the number of missiles
created.

18 aurastate
auralencalc

SorDoFrozenArmor - Apply the state on the target unit with
its length controlled by “auralencalc”.

19 srvmissilea
calc1

SorDoInferno - Create the missile where “calc1” controls
the range. Continue creating missiles while having the
“inferno” state.

20 aurarangecalc
calc1
calc2

SorDoStaticField - Apply damage to all units in the area.
Use “aurarangecalc” to control the damage radius. Use
“calc1” to control the Life percent damage. Use “calc2” to
control the minimum damage dealt.

21 calc1 SorDoTelekinesis - If the target is a monster or player, then
deal damage and use “calc1” to control the knockback
chance. If the target is an item, then ensure that the item
type is a scroll, gold, or potion. If the target is a object, then
call the object’s operate function.

22 aurastate
aurastat1
srvmissilea
srvmissileb
srvmissilec
calc1

SorDoFrostNova - Shoot missiles in a circular array. Use
the “srvmissilea” missile by default, or use 1 of the 3
missiles depending on the progressive charges controlled
by the “aurastate” field and “aurastat1” fields. Use “calc1” to
add to the velocity of the missiles created.

23 aurastate
auralencalc

SorDoBlaze - Add the “aurastate” state on the caster with a
duration controlled by “auralencalc”. Apply any aura stats or
events.

24 srvmissilea
srvmissileb
calc1

SorDoFirewall - Create 2 “srvmissilea” missiles in opposite
directions and create 2 “srvmissileb” missiles also at those
locations. Use “calc1” to control how many different groups
of these missiles can exist at once.

25 aurastate
auralencalc

SorDoEnchant - Add the “aurastate” state on the target with
a duration controlled by “auralencalc”. Apply any aura stats
or events.

26 srvmissilea
calc1

SorDoChainLightning - Create the missile, which can jump
off targets hit, where “calc1” controls the number of missile
chain jump hits

27 SorDoTeleport - Check that the level allows teleporting (see
“Teleport” in Levels.txt), then validate the target location
and warp the unit to that location.

28 srvmissilea SorDoMeteor - Check that the target location is valid to
spawn the missile, then create it

29 aurastate
auralencalc
srvmissilea
Param7

SorDoThunderStorm - While the caster unit has the
“aurastate” state with the “auralencalc” duration, find nearby
a nearby enemy and shoot the missile. Use “Param7” to
control the radius size for finding nearby enemies.

30 auratargetstate
aurarangecalc
auralencalc

NecDoAmplifyDamage - Apply the “auratargetstate” state
on enemies in an area where “aurarangecalc” controls the
radius and “auralencalc” controls the duration. Also apply
and aura stats, events, and filters.

31 pettype
calc1
calc2

NecDoRaiseSkeleton - Validate the target corpse and then
create a pet unit. Use “calc1” to control the life percent of
the pet. Use “calc2” to control the percent chance to spawn
the skeleton with a shield (only works for the
“necroskeleton” monster).

32 NecDoApplyDamage - Validate the target enemy and
perform damage from the attacker

33 calc1
calc2
calc3
calc4

AssDoPsychicHammer - Validate that the target unit is a
monster or player and is not in town. Use the calculation
fields to control the chance to knockback the target if it is a
monster, unique monster, boss, or player, respectively.

34 aurastate
auralencalc
aurastat1
aurastat2
aurastatcalc2

AssDoProgressiveAttack - Attempt to attack the target unit
and deal damage. Calculate the progressive damage. Use
“auralencalc” to determine the length of the charges. Use
“aurastat1” to control the progressive charges. Use
“aurastat2” as a stat when the player attacks and has no
charges. Use “aurastatcalc2” to control that stat’s value.

35 aurastate
auralencalc
aurastat1
aurastat2
aurastatcalc2

AssDoDualProgressiveAttack - Check that the player has 2
weapons equipped. Attempt to attack the target unit twice
with a frame delay, and use the “AssDoProgressiveAttack”
(Code = 34) function for each attack.

36 aurastate
aurastat1
srvmissilea
srvmissileb
srvmissilec
calc1

ApplyClawsOfThunderLvl2 - Shoot missiles in a circular
array. Use the “srvmissilea” missile by default, or use 1 of
the 3 missiles depending on the progressive charges
controlled by the “aurastate” field and “aurastat1” fields.
Use “calc1” to add to the velocity of the missiles created.

37 aurastate
aurarangecalc

ApplyClawsOfThunderLvl3 - Shoot missiles in an arc array.
Use the “srvmissilea” missile by default, or use 1 of the 3

aurastat1
srvmissilea
srvmissileb
srvmissilec

missiles depending on the progressive charges controlled
by the “aurastate” field and “aurastat1” fields. Use
“aurarangecalc” to control how many missiles are created,
only if there are no values from the progressive charge
calculation fields (see “prgcalc1”)

38 aurastate
aurarangecalc
aurastat1

AssDoAreaDamage - Deal damage to enemies in an area
at a target location. Use the progressive calculation fields to
determine the radius increase per charge, controlled by the
“aurastate” state and the “aurastat1” value, otherwise use
“aurarangecalc” for the radius.

39 aurastate
aurarangecalc
aurastat1
srvmissilea
srvmissileb
srvmissilec

AssMissileDisc - Create a disc of randomly positioned
missiles. Use the “srvmissilea” missile by default, or use 1
of the 3 missiles depending on the progressive charges
controlled by the “aurastate” field and “aurastat1” fields.
Use the progressive calculation fields to determine the
radius increase per charge, controlled by the “aurastate”
state and the “aurastat1” value, otherwise use
“aurarangecalc” for the radius.

40 aurastate
aurastat1
srvmissilea
srvmissileb
srvmissilec

ApplyRoyalStrikeLvl1 - Create a missile at a target location.
Use the “srvmissilea” missile by default, or use 1 of the 3
missiles depending on the progressive charges controlled
by the “aurastate” field and “aurastat1” fields.

41 aurastate
aurarangecalc
aurastat1
srvmissilea
srvmissileb
srvmissilec

ApplyChaosIce - Create multiple missiles from the caster
unit. Use the “srvmissilea” missile by default, or use 1 of the
3 missiles depending on the progressive charges controlled
by the “aurastate” field and “aurastat1” fields. Use the
progressive calculation fields to determine the number of
missiles created per charge, controlled by the “aurastate”
state and the “aurastat1” value. Use “aurarangecalc” for the
radius.

42 calc2
calc3
calc4
Param1
Param2

AssDoDragonTalon - Attempt to melee attack the target
unit multiple times. Use the progressive fields to control the
charge functions. Use each calculation field to control the
percent chance to knockback for a monster, boss, or player
unit. Use the parameters to control a linear calculation for
the percentage of bonus physical damage dealt.

43 aurastate
aurarangecalc
aurastat1
srvmissilea
srvmissileb
srvmissilec

AssDoShockField - Create multiple missiles using the lob
function. Use the “srvmissilea” missile by default, or use 1
of the 3 missiles depending on the progressive charges
controlled by the “aurastate” field and “aurastat1” fields.
Use the progressive calculation fields to determine the
number of missiles created per charge, controlled by the
“aurastate” state and the “aurastat1” value. Use
“aurarangecalc” for the radius.

44 pettype AssDoBladeSentinel - Summon a pet at the target location
and cause it to oscillate

45 pettype AssDoWakeOfFireSentry - Summon a pet at the target
location

46 calc1
calc4

AssDoDragonClaw - Attempt to attack the target unit twice
with a frame delay. Use “calc1” to control the percent
increase for physical damage dealt. Use “calc4” to control
the percent of damage converted to elemental, if the
“Etype” field is used. Use the progressive fields to
determine progressive damage changes.

47 aurastate
auratargetstate
auralencalc
aurarangecalc

AssDoCloakOfShadows - Apply the “aurastate” state on the
caster unit with a duration controlled by “auralencalc”. Apply
the “auratargetstate” state on nearby enemies in a radius
controlled by “aurarangecalc”. Use any applicable aura
stats or filters.

48 aurastate
aurastat1
srvmissilea
srvmissileb
srvmissilec

AssDoBladeFury - Create a missile after a frame delay.
Use the “srvmissilea” missile by default, or use 1 of the 3
missiles depending on the progressive charges controlled
by the “aurastate” field and “aurastat1” fields. Use the
progressive calculation fields to modify the delay between
creating the next missile, based on the charges.

49 pettype
Param5
Param6

AssDoShadowWarrior - Create a pet unit with generated
item equipment and stats. Use “Param5” and “Param6” to
control the item level for the generated items on the pet.

50 aurarangecalc
calc1

AssDoDragonTail - Attempt to attack a target unit and deal
damage in an area. Use the progressive fields to control the
charge functions. Use “aurarangecalc” to control the radius.
Use “calc1” to control the percent increase in damage dealt.

51 aurarangecalc
calc1
calc2
Param4

AssDoMindBlast - Randomly damage and convert enemies
in an area. Use “aurarangecalc” to control the radius, or if
using the progressive charges, then use their field values
instead. Use “calc1” to control the chance to convert
enemies. Use “calc2” to control the duration enemies are
converted. Use “Param4” to add an additional randomized
duration value.

52 calc1 AssDoDragonFlight - Teleport the caster to the target unit
and attempt to attack it. Use the progressive fields to
control the charge functions. Use “calc1” to control the
percent increase for physical damage dealt.

53 aurastate
aurarangecalc
aurastat1

AssDoAreaDamage2 - Deal damage to enemies in an area
around the caster. Use the progressive calculation fields to
determine the radius increase per charge, controlled by the
“aurastate” state and the “aurastat1” value, otherwise use
“aurarangecalc” for the radius.

54 aurastate
aurarangecalc

AssDoBladeShield - Deal damage to enemies in an area
around the caster. Use the progressive calculation fields to

aurastat1 determine the radius increase per charge, controlled by the
“aurastate” state and the “aurastat1” value, otherwise use
“aurarangecalc” for the radius.

55 aurarangecalc
calc1
calc2
calc3
EType

NecDoCorpseExplosion - Hide the target corpse and deal
damage in an area. Use “aurarangecalc” to control the
radius. Use “calc1” and “calc2” to control the min and max
percent damage dealt based on the max Life from the
corpse unit. Use “calc3” to control the percent of damage
converted to elemental.

56 pettype NecCreateGolem - Create a pet unit with defined stats. If
the skill has the “TargetableOnly” and “TargetCorpse” flag
enabled, then the summoned pet will copy the modifiers of
the corpse.

57 pettype NecCreateIronGolem - Validate that the target is an
identified item on the ground. Remove the item and create
the pet, inheriting properties from the item.

58 pettype NecDoRevive - Validate that the target is a corpse that can
be revived, then revive the monster, applying any valid
stats

59 auratargetstate
auralencalc
aurarangecalc
aurastat1

NecDoAttract - Validate that the target is a monster and can
have its AI changed. Apply the “auratargetstate” state on
any valid monsters in an area controlled by “aurarangecalc”
which lasts a duration controlled by “auralencalc”.

60 pettype
calc2
srvmissilea

NecDoBoneWall - Create the pet, and then create 2
missiles that shoot in opposite directions, where “calc2”
controls the number of sub missiles to create within each of
these missile parameters.

61 auratargetstate
auralencalc
aurarangecalc
aurastat1

NecDoConfuse - Validate that the target is a monster and
can have its AI changed. Apply the “auratargetstate” state
on any valid monsters in an area controlled by
“aurarangecalc” which lasts a duration controlled by
“auralencalc”.

62 pettype NecDoBonePrison - Create a number of pets around the
target unit.

63 srvmissilea NecDoPoisonExplosion - Validate that the target corpse
can explode, then update the corpse to be unselectable
and create a radial ring of poison missiles.

64 calc2
Param4

PalDoSacrifice - Attack and deal damage to the target. Deal
damage to the caster based on a percentage of life
controlled by “calc2” and “Param4”.

65 aurastate
auratargetstate
aurarangecalc

PalDoMight - Apply the aurastate” state to the caster. Apply
the “auratargetstate” state to nearby units, where
“aurarangecalc” controls the radius size.

66 aurastate
auratargetstate
aurarangecalc

PalDoHolyFire - Apply the aurastate” state to the caster.
Apply the “auratargetstate” state to nearby units, where

“aurarangecalc” controls the radius size. Deal damage to
the nearby units in the area.

67 calc1
calc4

PalDoCharge - Listen for the event frames and attempt to
attack the target unit to deal damage. Use “calc1” to control
the percent increase for physical damage dealt. Use “calc4”
to control the percent of damage converted to elemental, if
the “Etype” field is used.

68 aurastate
auralencalc
srvmissilea

BarDoBattleCry - Create a circular array of missiles and
add the “aurastate” state to the caster unit where the
duration is controlled by “auralencalc”

69 calc1
Param3
Param4

BarDoFindHeart - Validate the target corpse, then update
the corpse to be unselectable and roll a random chance to
create a potion. Use “calc1” to control the chance of finding
a potion. Use “Param3” and “Param4” to control the chance
for finding a mana potion and rejuvenation potion. Potions
depend on the current Act level and Game Difficulty.

70 aurastate
calc1
calc2
calc3
calc4

BarDoDoubleSwing - Validate the target enemy and attack
it based on the animation sequence frame to determine if it
is the first attack or second attack. Uses the BarStartBash
function (Code 32 for “srvstfunc”).

71 auratargetstate
auralencalc

BarDoTaunt - Validate that the target is a monster and can
have its AI changed to force it to attack the caster. Apply
the “auratargetstate” state on the target, which lasts a
duration controlled by “auralencalc”. If there is no target
selected, then find the nearest target within a radius value
of 20.

72 calc1
Param1
Param2
Param3
Param4

BarDoFindItem - Validate the target corpse, then update
the corpse to be unselectable and roll a random chance to
spawn a treasure class item. Use “calc1” to control the
chance of finding an item. Use the parameter values to
control the chances for finding Low Quality, Normal, High
Quality, and Magic items.

73 srvmissilea
calc1

PalDoBlessedHammer - Create a missile in a spiral path
pattern. Use “calc1” to control the damage percent bonus
when the caster has the “concentration” state.

74 calc1 BarDoDoubleThrow - Launch the weapon missile, where
“calc1” controls the bonus damage percent

75 srvmissilea
srvmissileb
srvmissilec

BarDoGrimWard - Validate the target corpse, then update
the corpse to be unselectable and create the “srvmissilea”
missile. If the target unit has the “large” flag enabled (see
monstats2.txt) then use “srvmissileb” instead. If the target
unit has the “small” flag enabled (see monstats2.txt) then
use “srvmissilec” instead.

76 aurastate
calc1

BarDoWhirlwind - If the caster unit is at the target location,
then remove the aura and stop whirlwinding. Otherwise,

find nearby enemies and deal damage, where “calc1”
controls the damage bonus.

77 calc1
calc2

BarDoLeap - Validate the target position and caster’s
collision, and move the unit. Use “calc1” to control the
range, and “calc2” to control the speed.

78 calc1
calc2
calc4

BarDoLeapAttack - Validate the target position and the
caster’s collision, and move the unit. Make the unit attack
the target, if nearby, or find another nearby target. Use
“calc2” to control the speed. Use “calc1” to control the
percent increase for physical damage dealt. Use “calc4” to
control the percent of damage converted to elemental, if the
“Etype” field is used.

79 auratargetstate
auralencalc
calc1
Param5

PalDoConversion - Validate that the target is a monster and
can have its AI changed to fight alongside the player. Apply
the “auratargetstate” state on the target, which lasts a
duration controlled by “auralencalc”. Use “calc1” to control
the chance to convert. Use “Param5” to enable a expire
effect.

80 srvmissilea
srvoverlay

PalDoFistOfTheHeavens - Create the missile and apply the
overlay on the target unit

81 aurastate
auratargetstate
aurarangecalc

PalDoHolyFreeze - Apply the “aurastate” state on the
caster, and apply the “auratargetstate” on any nearby
enemies with a radius controlled by “aurarangecalc”.

82 aurastate
aurarangecalc
calc1
calc2
calc3

PalDoRedemption - Apply the “aurastate” state on the
caster. Use “aurarangecalc” to control the radius of the
aura, which will look for valid corpses to redeem. Use
“calc1” to control the chance to redeem. Use “calc2” to
control the life gain. Use “calc3” to control the mana gain.

83 MonDoFirehit - Apply damage to the target

84 calc1 MonDoMaggotEgg - Spawn a number of units around the
caster and kill the caster. Use “calc1” to control the number
of spawned units.

85 srvmissilea MonDoShamanFire - Get the missile and possibly add the
monster’s number in class to the missile ID to get another
missile ID instead, and then fire that missile

86 calc1 MonDoMaggotDown - Check for the proper frame count
and then heal the caster by a percentage of Life controlled
by “calc1”

87 MonDoMaggotLay - Spawn a unit in 1 of 8 possible
directions nearby the target location

88 srvmissilea MonDoAndariel - For multiple frames, spawn a missile in 1
of 8 possible directions

89 MonDoJump - Validate the target path and check for the
completion of the animation or the arrival to destination,

then update the unit’s collision. Handle special cases for
the “sandleaper1” monster frame counts.

90 calc1
calc2

MonDoSwarmMove - Check for the skill flag to stop the
sequence, otherwise reset the sequence. Use “calc1” to
control the animation starting frame at the beginning of the
sequence. Use “calc2” to control the animation frame when
ending the sequence.

91 sumoverlay MonDoNest - Make the caster unit interruptable. Create the
monster saved in the function parameter and make that
monster unable to reward Experience and Item Drops, and
add the overlay on that monster.

92 srvmissilea MonDoQuickStrike - Apply damage to the target. Check for
the monster’s missile frame and then launch the missile.

93 srvmissilea MonDoGargoyleTrap - Create the missile in one of the
allowed directions that is closest to the target unit

94 MonDoSubmerge - When on the last frame, set the
animation sequence rate to 0 and clear the frame events

95 srvmissilea
calc1
calc3

MonDoMonsterInferno - Continuously create missiles
based on the monster’s Inferno fields (See monstats2.txt).
Use “calc1” to adjust the missile range. Use “calc3” to
adjust the density when to create the next missile.

96 calc1
calc2

MonDoZakarumHeal - Heal the ally target by a random
percentage of the target’s life, where “calc1” controls the
min percent and “calc2” controls the max percent

97 srvoverlay MonDoResurrect - Validate that the monster is dead and
can be resurrected. Make the monster have proper
collision, be attackable, be selectable, able to be hit by
missiles, not provide experience, and not provide item
drops. Also update the monster’s mode and add an overlay.

98 MonDoTeleport - Validate the target location and teleport
the unit. Adjust the location if the monster has a boss
owner.

99 srvmissilea
calc1
calc2

MonDoPrimePoisonNova - Create 2 rings of missiles. Use
“calc1” to control the number of missile subloops. Use
“calc2” to control how many missiles are created per ring.
Use the missile’s “Param1” and “Param2” values to control
its velocity per ring (See Missiles.txt).

100 srvoverlay MonDoDiabCold - Deal elemental damage to the target and
apply the overlay. Adjust the Freeze Length using the
“ELen” fields from the skill.

101 srvmissilea
calc1

MonDoFingerMageSpider - Create the missile with a facing
opposite of the target or caster unit, and use “calc1” to
control the missile’s subloops.

102 srvmissilea
calc1

MonDiabWallMaker - Create a number of missiles with a
randomized path and range. Use “calc1” to control the
number of missiles created.

103 calc1
Param1
Param2
Param3
Param4
Param5
Param6

MonDoDiabRun - Move the caster unit with increased
speed towards a target, and then attack the target, dealing
damage. Use “calc1” to control the increase in movement
speed. The 6 parameter values controls the run animation’s
stop frame length, stop event frame, start event frame, start
frame length, loop repeat event frame, loop frame length,
and loop start event frame.

104 summon MonDoDiabPrison - Create multiple of the “summon” units
around the target, based on the type of unit that is being
targeted

105 srvmissilea
calc1

MonDoDesertTurret - Create a number of missiles in 8
possible directions. Use “calc1” to control the number of
missiles created.

106 srvmissilea MonDoArcaneTower - Create a circular array of missiles

107 calc3
Param1

MonDoMosquito - Validate that the caster is in melee range
for the target and then deal damage, including randomized
poison damage, mana drain, and stamina drain. Use
“calc3” to control the heal percentage on the caster based
on the damage dealt. Use “Param1” to control the
animation frame to start the repeat loop.

108 calc1 MonDoRegurgitatorEat - Validate that the target corpse is a
monster and then remove it and heal the caster by a
percentage of the target’s life, controlled by “calc1”

109 aurastate
auralencalc
calc1

MonDoFrenzy - Attempt to attack the target unit, dealing
damage. Add the “aurastate” state to the caster unit, with a
duration controlled by “auralencalc”. Use “calc1” to control
the percentage increase for physical damage dealt.

110 srvmissilea MonDoHireFireMissile - Launch the weapon missile to the
target. Use “srvmissilea” if the weapon missile is “arrow” or
“bolt”.

111 Param4 MonDoFetishAura - Apply an aura to nearby “fetish1” or
“fetishblow1” monster types, increasing their attack rate.
Use “Param4” to control the radius.

112 auratargetstate
aurarangecalc
auaralencalc
Param5
Param6
Param7

MonDoCurse - Apply a random curse to enemy units in an
area. Randomly select between the following curses:
Amplify Damage, Weaken, Life Tap, Decrepify, Lower
Resist. Use “aurarangecalc” to control the radius. Use
“auralencalc” to control the duration. Use “Param5” and
“Param6” to control the resistance percentage change for
the Lower Resist curse. Use “Param7” to control the
Decrepify attack speed and movement speed change.

113 ItemDoBookSkill - Check the caster’s inventory for an item
that has the “Book” or “Scroll” Item Type (See

ItemTypes.txt), and then use that item’s skill and update its
quantity.

114 pettype
calc1
calc2

DruDoRaven - Create the pet unit and make it
unattackable. Use “calc1” to control the pet’s bonus Life
percent. Use “calc2” to control the summoned pet’s unit
level.

115 pettype
calc1
calc2

DruCreateVineCreature - Create the pet unit in the “Skill 1”
mode. Use “calc1” to control the pet’s bonus Life percent.
Use “calc2” to control the summoned pet’s unit level.

116 aurastate
auralencalc

DruDoWerewolf - Add/Remove the “aurastate” state on the
caster, depending if the caster unit does or does not have
the state. Use “auralencalc” to control the state duration

117 srvmissilea
calc1

DruDoFireStorm - Create a number of missiles that move in
a randomized pattern. Use “calc1” to control the number of
missiles created.

118 srvmissilea
calc1

DruDoTwister - Create a number of missiles that move in a
randomized pattern. Use “calc1” to control the number of
missiles created.

119 pettype
calc1
calc2

DruCreateTotem - Create the pet unit at a valid target
location. Use “calc1” to control the pet’s bonus Life percent.
Use “calc2” to control the summoned pet’s unit level.

120 aurastate
auralencalc
calc2

DruDoFeralRage - After hitting the target, apply the state on
the caster unit with a duration controlled by “auralencalc”
and with the capability to stack with charges. Use “calc2” to
control the max charges.

121 auratargetstate
calc1

DruDoRabies - Attack the target to deal damage. Apply the
“auratargetstate” where its duration is controlled by the
“ELen” field. Use “calc1” to control the percent increase in
physical damage.

122 calc1
calc2
calc3

DruDoHunger - Attempt to attack the target, dealing
damage and restoring Life and Mana. Use Use “calc1” to
control the percent change in physical damage. Use “calc2”
and “calc3” to control the life steal and mana steal gained
from the attack damage.

123 srvmissilea

DruDoVolcano - Validate the target location and then create
the missile

124 aurastate
auralencalc
Param4

DruDoArmageddon - Apply the “aurastate” state on the
caster unit which lasts a duration controlled by
“auralencalc”. Use “Param4” to control the duration
between sending an event state update.

125 srvmissilea MonDoWakeOfFire - Create a missile from the source unit
with a saved direction

126 srvmissilea
calc2
Param2

MonDoImpInferno - Based on the animation frames set in
monstats2.txt, create a missile where “calc2” controls the
missile’s range (and also “Param1” from Missiles.txt).

127 calc1 MonDoBatSuckBlood - Deal damage to the target and then
use “calc1” to control the percentage of max Life healed on
the caster unit

128 calc1
srvoverlay

MonDoCryHelp - If the caster is a monster, then command
the caster to attack the target for a duration controlled by
“calc1”. Apply the overlay on the target.

129 aurastate MonDoImpTeleport - If the target location is on the ground,
then warp the unit to that location. If the type of unit
targeted is the “barricadetower” or “siegebeast1” and the
caster unit type is “imp1”, then add the “attached” state to
the caster unit, and update the AI, animation events, and
stats to be not interactable.

130 srvmissilea
calc1

MonDoVineAttack - Create a number of missiles in a
random spread pattern with 4 possible spread directions.
Use “calc1” to control the number of missiles created.

131 auratargetstate
calc1

MonDoOverseerWhip - Validate that the target is a living
monster. If the target unit type is “minion1”, then perform a
random chance to bloodlust the target. Use “calc1” to
control the percent chance to bloodlust the target, which will
apply the “auratargetstate” state on the target. If bloodlust
does not happen, then change the monster class and AI to
the suicide minion.

132 srvmissilea MonDoImpFireMissile - Based on the monster’s number in
class, increment the index of the linked “srvmissilea” missile
and then create that missile based on the index.

133 MonDoImpregnate - Validate that the target is a friendly
dead monster and that it does not have the “pregnant”
state. Then add the “pregnant” state to the target and
create a “painworm1” type monster.

134 srvmissilea
aurarangecalc

MonDoSiegeBeastStomp - Deal damage to nearby
enemies in an aura where “aurarangecalc” controls the
radius of the damage

135 sumoverlay MonDoSpawner - Create the monster saved in the
parameter with the added overlay, with no experience
provided, and with no item spawning.

136 srvmissilea
calc1

MonDoDeathMauler - Validate the target location and then
create the missile with an animation rate controlled by
“calc1”. The missile’s range is modified based on the
distance from the caster.

137 aurastate MonDoFenrisRage - Validate that the target is an enemy
corpse that has not been used. Apply the state on the
caster, adding any aura events on the caster.

138 srvmissilea
calc1
calc2

MonDoBaalInferno - Shoot multiple missiles from the caster
unit to a target location. Use “calc1” to control the number
of missiles created. Use “calc2” to control the range of the

missiles. Check the inferno frame events for the monster
(see monstats2.txt).

139 srvmissilea MonDoBaalCold - Validate the target location and then
create the missile using the directions from the saved
parameters.

140 MonDoBaalTentacle - Based on the monster class of the
caster, create a number of “baaltentacle1” summoned
monsters randomly positioned in a location with a radius
size of 9. Make sure these monsters do not provide exp or
reward items.

141 aurarangecalc
calc1
calc2
calc3
EType
Param5
Param6

MonDoBaalCorpseExplosion - Find a nearby dead monster
and then do the “NecDoCorpseExplosion” function (Code =
55) except where “Param5” and “Param6” control the
baseline radius and radius increase per skill level.

142 prgcalc1
prgcalc2
prgcalc3
aurastate
aurastat1
aurarangecalc

AssDoAreaAttack - Deal attack damage in an area. Based
on the “progressive” flag, the “aurastate” field, or the
“aurastat1” field, use the proper “progcalc#” value to control
the radius, based on the number of progressive charges.
Otherwise, default to using “aurarangecalc” for the radius.

143 prgcalc1
prgcalc2
prgcalc3
aurastate
aurastat1
srvmissilea
srvmissileb
srvmissilec

ApplyRoyalStrikeLvl2 - Create a number of missiles that
move in a randomized pattern. Use the “srvmissilea” missile
by default, or use 1 of the 3 missiles depending on the
progressive charges controlled by the “aurastate” field and
“aurastat1” fields. Use “aurarangecalc” value by default for
the number of missiles created, or use the appropriate
progressive calculation fields, based on the number of
progressive charges.

144 pettype
calc1

SorDoHydra - Validate the target location and create 3
pets, where “calc1” controls their duration and bonus life
percent.

145 aurastate
aurarangecalc
Param4

DruApplyHurricane - Apply the state on the caster with the
radius controlled by “aurarangecalc” and the frame state
updates to deal radius damage controlled by “Param4”.

146 aurastate
aurarangecalc
srvmissilea
Param4

DruApplyArmageddon - Update the state on the caster unit
based on the events, and then create a missile in a radius
controlled by “aurarangecalc” at a periodic frame interval
controlled by “Param4”.

147 MonApplyAttached - Get the source unit of the caster and
update the caster’s pathing to follow the source unit, like a
rider attached to its mount.

148 srvmissilea MonDoDoomKnightMissile - Create the “srvmissilea” using
either the lob function or the normal linear function,

depending on the “lob” flag. Also select the missile or up to
3 index values higher, depending on the monster’s graphics
variation for the “Special 3” component variation.

149 srvmissilea MonDoNecroMageMissile - Create the “srvmissilea” using
either the lob function or the normal linear function,
depending on the “lob” flag. Also select the missile or up to
3 index values higher, depending on the monster’s graphics
variation for the “Special 4” component variation.

150 calc1
calc2
calc4

PalDoSmite - Validate the target enemy and that the target
is in melee range, and then attempt to attack the target.
Use “calc1” to control the percent increase for physical
damage dealt. Use “calc2” to control the stun length. Use
“calc4” to control the percent of damage converted to
elemental, if the “Etype” field is used.

151 srvmissilea
calc1

SorDoChainLightning2 - Launch the missile that can do
chain hits to other nearby enemies. Use “calc1” to control
the number of chain hits.

152 srvmissilea
calc1
calc3

MonDoDiabloLight - Shoot a missile from the caster to the
target location, adhering to the caster’s inferno animation
frames (See monstats2.txt). Use “calc1” to control the
missile range, otherwise default to using the missile’s
“Param2” value calculated with its current level. Use “calc3”
to control the periodic frame count for how often to create
the missile.

prgstack - Boolean Field. If equals 1, then all “srvprgfunc#” functions will execute,
based on the current number of progressive charges. If equals 0, then only the relative
“srvprogfunc#” function will execute, based on the current number of progressive
charges.
srvprgfunc1 (to srvprgfunc3) - Controls what Server Do function is used when
executing the progressive skill with a charge number equal to 1, 2, and 3, respectively.
This field uses the same functions as the “srvdofunc” field.
prgcalc1 (to prgcalc3) - Calculation Field. Used as a possible parameter for calculating
values when executing the progressive skill with a charge number equal to 1, 2, and 3,
respectively.

prgdam - Calls a function to modify the progressive damage dealt

Code Parameters Description

0 Do nothing

1 aurastat1
calc1
tgtoverlay

ModifyProgressiveDamage - Modify the percentage of the
physical damage dealt and apply an overlay on the target

2 aurastat1
calc1

ModifyProgressiveSteal - Modify the percentage of the life
steal and mana steal gained

3 aurastat1
EType
Param2

ModifyProgressiveElemental - If the progressive damage
elemental type equals Cold, then at 3 charges, modify the

Freeze Length based on the Cold Length and a divisor (using
Param2)

4 aurastat1
EType
calc1
Param5

ModifyProgressiveElementalConvert - Convert a percentage of
the physical damage dealt to elemental damage, based on the
“calc1” field. If the elemental type equals Cold, then at 3
charges, modify the Freeze Length based on the Cold Length
and a divisor (using Param5)

srvmissile - Used as a parameter for controlling what main missile is used for the
server functions used (See “Missile” field in Missiles.txt)
decquant - Boolean Field. If equals 1, then the unit’s ammo quantity will be updated
each time the skill’s Server Do function is called. If equals 0, then ignore this.
lob - Boolean Field. If equals 1, then missiles created by the skill’s functions will use the
missile lobbing function, which will cause the missile fly in an arc pattern. If equals 0,
then missiles that are created will use the normal linear function.
srvmissilea (to srvmissilec) - Used as a parameter for controlling what secondary
missile is used for the server functions used (See “Missile” field in Missiles.txt)
srvoverlay - Creates an overlay on the target unit when the skill is used. This is a
possible parameter used by various skill functions (See the “overlay” field in Overlay.txt)

aurafilter - Controls different flags that affect how the skill’s aura will affect the different
types of units. Uses an integer value to check against different bit fields. For example, if
the value equals 4354 (binary = 1000100000010) then that returns true for the 4096
(binary = 1000000000000), 256 (binary = 0000100000000), and 2 (binary =
0000000000010) bit field values.

Bit Field
Value

Binary Equivalent Value Description

1 00000000000000000001 Find Players

2 00000000000000000010 Find Monsters

4 00000000000000000100 Find Undead Monsters

8 00000000000000001000 Find Missiles

16 00000000000000010000 Find Objects

32 00000000000000100000 Find Items

64 00000000000001000000 Limit number of targets

128 00000000000010000000 Attackable units only

256 00000000000100000000 Make sure the target is not in town

512 00000000001000000000 No missile barriers to center

1024 00000000010000000000 Missile units only

2048 00000000100000000000 Custom check function

4096 00000001000000000000 Find dead units only

8192 00000010000000000000 Units not in town

16384 00000100000000000000 No bosses

32768 00001000000000000000 Run a target check function, checking for
unit types and player alignment

65536 00010000000000000000 Allies

131072 00100000000000000000 Target in melee range

262144 01000000000000000000 No Act boss units (See the “primeevil” field
in monstats.txt)

524288 10000000000000000000 Units not in the Just Hit state

aurastate - Links to a state that can be applied to the caster unit when casting the skill,
depending on the skill function used (See the “state” field in states.txt)
auratargetstate - Links to a state that can be applied to the target unit when using the
skill, depending on the skill function used (See the “state” field in states.txt)
auralencalc - Calculation Field. Controls the aura state duration on the unit (where 25
Frames = 1 second). If this value is empty, then the state duration will be controlled by
other functions, or it will last forever. This can also be used as a parameter for certain
skill functions.
aurarangecalc - Calculation Field. Controls the aura state’s area radius size, measured
in grid sub-tiles. This can also be used as a parameter for certain skill functions.
aurastat1 (to aurastat6) - Controls which stat modifiers will be altered or added by the
aura state (See the “Stat” field from ItemStatCost.txt)
aurastatcalc1 (to aurastatcalc6) - Calculation Field. Controls the value for the relative
“aurastat#” field.
auraevent1 (to auraevent3) - Controls what event will trigger the relative
“auraeventfunc#” field function. Links to an event listed in the events.txt file.

auraeventfunc1 (to auraeventfunc3) - Controls the function used when the relative
“auraevent#” event is triggered.

Code Parameters Description

0 Do nothing

1 srvmissilea SorApplyChillingArmor - Shoot a missile at the
target unit

2 cltoverlaya
calc1

SorApplyFrozenArmor - Deal skill damage with the
freeze length controlled by the calc field and apply
an overlay to the attacker

3 cltoverlaya SorApplyShiverArmor - Deal elemental skill
damage and apply an overlay to the attacker

4 auratargetstate
calc1
calc2
calc3
calc4

NecApplyIronMaiden - Deal damage to the
attacking unit using the calc fields as damage
modifiers, based on the state being active.

If the target monster is equal to “bloodgolem” then
calculate a life steal and also create the “steallife”
overlay on the golem’s caster unit.

5 auratargetstate
calc1
prgoverlay

NecApplyLifeTap - If the target has the
“auratargetstate” state, then apply a percentage
heal to the attacker that is determined by the calc
field. Also apply an overlay to the attacker when
the attack is healed.

6 ItemApplyAttackerTakesDamage - Deal physical
damage to the attacker

7 ItemApplyKnockback - Determine a chance to
knockback the attacker monster

8 ItemApplyHowl - Apply terror to the monster,
changing its AI to run away

9 ItemApplyDimVision - Based on a random chance,
apply the “Dim Vision” skill to the enemy attacker
with a random skill level between 1 to 20.

10 ItemApplyAttackerTakesLtngDamage - Deal
lightning damage to the attacker

11 ItemApplyAttackerTakesFireDamage - Deal fire
damage to the attacker

12 ItemApplyAttackerTakesColdDamage - Deal cold
damage to the attacker, and apply a cold length
that is modified based on the level difference
between the attacker and defender

13 ItemApplyDamageToMana - Add mana to the
source unit, based on a percentage of the damage
taken. Also add a “stealmana” overlay to the
source unit.

14 ItemApplyFreeze - Based on a random chance,
deal damage to the enemy attacker and apply a
freeze length

15 ItemApplyOpenWounds - Based on a random
chance, apply open wounds on the target, using
the “openwounds” state

16 ItemApplyCrushingBlow - Based on a random
chance, deal crushing blow percentage life
damage to the enemy attacker and apply the
“bash” overlay

17 ItemApplyManaAfterKill - Add mana to the source
unit and add a “stealmana” overlay

18 ItemApplyHealAfterDemonKill - If a Demon enemy
is killed, then add life to the source unit and add a
“steallife” overlay

19 ItemApplySlow - Apply the “slowed” state to the
target

20 ItemApplyHitOrAttack - Based on a random
chance, cast a skill on the target when the source
unit attacks

21 ItemApplyGetHit - Based on a random chance,
cast a skill on the attacker when the source unit
gets hit

22 aurastate
aurastat1
aurastat2

NecApplyBoneArmor - Calculates the minimum
and maximum damage to absorb based on the

aura stat values. If no remaining absorbing
damage is left, then remove the state.

23 calc2
calc3

NecApplyBloodGolemSteal - Calculate a life steal
for the attacking unit and its boss unit. Also create
the “steallife” overlay on the both units.

24 aurastate
calc1
calc2
prgoverlay

SorApplyEnergyShield - If the “aurastate” state is
active, then calculate the percentage of damage
taken by the source unit that should be absorbs
and the amount of mana that should be consumed
by the percent absorbed. Also apply an overlay on
the source unit. If the source unit runs out of mana,
then remove the state.

25 aurastate
aurastat1
aurastat2

DruApplyCycloneArmor - Calculates the minimum
and maximum elemental damage to absorb based
on the aura stat values. If no remaining absorbing
damage is left, then remove the state.

26 Param5 NecApplyBloodGolemShare - Controls the
percentage of damage taken by the source unit
that should be transferred to the source unit’s
boss.

27 NecApplyClayGolemSlow - Apply the “slowed”
state to the target

28 ItemApplyHealAfterKill - Add life to the source unit
and add a “steallife” overlay

29 ItemApplyRestInPeace - Apply the “restinpeace”
state on the enemy unit

30 ItemApplyOnDeath - Based on a random chance,
cast a skill when the source unit dies

31 ItemApplyReanimate - Based on a random
chance, revive a dead monster that is not a
champion or unique.

32 aurarangecalc HitClass SkillApplyRadiusDamage - Use a skill’s damage to
deal damage in an area based on the skill’s hit
class

33 aurastatcalc1
aurastatcalc2
passiveitype
passivereqweaponcount
sumskill1
sumsk1calc

SkillActivateSubskill - Based on a random chance
controlled by the “aurastatcalc1” value, cast a skill
(determined by “sumskill1”) with a skill level
controlled by “sumsk1calc”. If “aurastatcalc2” value
is greater than 0, then factor the “passiveitype” and
“passivereqweaponcount” fields for determining if
the skill should be cast or not.

passivestate - Links to a state that can be applied by the passive skill, depending on
the skill function used (See the “state” field in states.txt)
passiveitype - Links to an Item Type to define what type of item needs to be equipped
in order to enable the passive state (See the “ItemType” field in ItemTypes.txt)
passivereqweaponcount - Controls how many equipped weapons are needed for this
passive state to be enabled. If the value equals 1, then the player must have 1 weapon
equipped for this passive state to be enabled. If the value equals 2, then the player must
be dual wielding weapons for this passive state to be enabled. If the value equals 0,
then ignore this field.
passivestat1 (to passivestat5) - Assigns stat modifiers to the passive skill (See the
“Stat” field from ItemStatCost.txt)
passivecalc1 (to passivecalc5) - Calculation Field. Controls the value for the relative
“passivestat#” field.

summon - Controls what monster is summoned by the skill (See the “Id” field in
monstats.txt). This field’s usage will depend on the skill function used. This field can
also be used as reference for AI behaviors and for the skilldesc.txt file.
pettype - Links to a pet type data to control how the summoned unit is displayed on the
UI (See “pet type” field in pettype.txt)
petmax - Calculation Field. Used skill functions that summon pets to control how many
summon units are allowed at a time.

summode - Defines the animation mode that the summoned monster will be initiated
with

Token Description

DT Death / Reset

NU Neutral

WL Walk

GH Get Hit

A1 Attack 1

A2 Attack 2

BL Block

SC Cast

S1 Skill 1

S2 Skill 2

S3 Skill 3

S4 Skill 4

DD Dead

GH Knockback

xx Sequence

RN Run

sumskill1 (to sumskill5) - Assigns a skill to the summoned monster. Points to another
“skill” id. This can be useful for adding a skill to a monster to transition its synergy
bonuses.
sumsk1calc (to sumsk5calc) - Calculation Field. Controls the skill level for the
designated “sumskill#” field when the skill is assigned to the monster.

sumumod - Assigns a monster modifier to the summoned monster (See the “id” in
monumod.txt)
sumoverlay - Creates an overlay on the summoned monster when it is first created
(see the “overlay” field in Overlay.txt)

stsuccessonly - Boolean Field. If equals 1, then the following sound and overlay fields
will only play when the skill is successfully cast, instead of always being used even
when the skill cast is interrupted. If equals 0, then the following sound and overlay fields
will always be used when the skill is cast, regardless if the skill was interrupted or not.
stsound - Controls what client sound is played when the skill is used, based on the
client starting function (see the “Sound” field in sounds.txt)
stsoundclass - Controls what client sound is played when the skill is used by the skill’s
assigned class (See “charclass” field), based on the client starting function (see the
“Sound” field in sounds.txt). If the unit using the skill is not the same class as the
“charclass” value for the skill, then this sound will not play.

stsounddelay - Boolean Field. If equals 1, then use the weapon’s hit class to determine
the delay in frames (where 25 frames = 1 second) before playing the skill’s start sound.
If equals 0, then the skill’s start sound will play immediately.

Hit Class Sound Used Sound Delay

None None 0 frames

Hand-To-Hand weapon_punch_1 6 frames

One Handed Swing Small weapon_1hs_small_1 6 frames

One Handed Swing Large weapon_1hs_large_1 6 frames

Two Handed Swing Small weapon_2hs_small_1 8 frames

Two Handed Swing Large weapon_2hs_large_1 8 frames

One Handed Thrust weapon_1ht_1 6 frames

Two Handed Thrust weapon_2ht_1 6 frames

Club weapon_1hs_large_1 6 frames

Staff weapon_staff_1 6 frames

Bow None 0 frames

Crossbow None 0 frames

Claw None 0 frames

weaponsnd - Boolean Field. If equals 1, then play the weapon’s hit sound when hitting
an enemy with this skill. The sound chosen is based on the weapon’s hit class. Also use
the sound delay based on the weapon’s hit class to determine the delay in frames
(where 25 frames = 1 second) before playing the weapon hit sound (See “stsounddelay”
for the types of hit class sounds and delays used). If equals 0, then do not play the
weapon hit sound when hitting an enemy with the skill attack.
dosound - Controls the sound for the skill each time the Client Do function is used (see
the “Sound” field from sounds.txt)
dosound a & dosound b - Used as a possible parameter for playing additional sounds
based on the Client Do function used (see the “Sound” field in sounds.txt)
tgtoverlay - Used as a possible parameter for adding an Overlay on the target unit,
based on the Client Do function used (see the “overlay” field in Overlay.txt)

tgtsound - Used as a possible parameter for playing a sound located on the target unit,
based on the Client Do function used (see the “Sound” field in sounds.txt)
prgoverlay - Used as a possible parameter for adding an Overlay on the caster unit for
progressive charge-up skill functions, based on the Client Do function used and how
many progressive charges the caster unit has (see the “overlay” field in Overlay.txt)
prgsound - Used as a possible parameter for playing a sound when using the skill for
progressive charge-up skill functions, based on the Client Do function used and how
many progressive charges the caster unit has (see the “Sound” field in sounds.txt)
castoverlay - Used as a possible parameter for adding an Overlay on the caster unit
when using the skill, based on the Client Start/Do function used (see the “overlay” field
in Overlay.txt)
cltoverlaya & cltoverlayb - Used as a possible parameter for adding additional
Overlays on the caster unit, based on the Client Start/Do function used (see the
“overlay” field in Overlay.txt)

cltstfunc - Client Start function. This controls how the skill works when it is starting to
cast, on the client side. This uses a code value to call a function, affecting how certain
fields are used.

Code Parameters Description

0 Do nothing

1 StartAttack - Check that the weapon is not a “Missile Potion”
item type and if the player has enough ammunition if it is a
ranged weapon

2 StartThrow - Check that the player has enough ammunition

3 StartUnsummon - Check that the target is a monster owned
by the player and that the monster’s Pet Type has
“unsummon” enabled (See pettype.txt)

4 StartLeftAttack - Return true

5 AssStartPsychicHammer - Check that the target is a valid
player or monster

6 calc1 AssStartDragonClaw - Validate that the target is a proper
enemy, and use the skill’s “calc1” field to save the number of
kicks to be used by the skill

7 aurastate AssStartCloakOfShadows - Check that the player does not
already have the state

8 prgoverlay
prgsound
seqinput

AssStartBladeFury - Add the overlay and sound if the player
does not have the “inferno” state. If the player does not have
the “inferno” state, then add it. Otherwise set the player’s
animation sequence frame.

9 Param4 AssStartDragonTail - Adjust the player’s attack speed using
the skill’s parameter

10 AssStartDragonFlight - Validate that the target is an enemy
monster or player

11 AmaStartCheckQuantity - Check that the player has enough
ammunition for the weapon

12 AmaStartJab - Validate the skill and prepare to track the max
targets to attack

13 aurarangecalc
calc1
calc3

AmaStartStrafe - Use the skill’s calculation fields to track the
minimum and maximum number of shots. Use the skill’s
“aurarangecalc” value to count nearby valid targets. Have the
caster unit face the first valid target found.

14 calc1 AmaStartFend - Find at least an initial valid target and
prepare to track the max targets to attack

15 prgoverlay
prgsound

SorStartInferno - Add the overlay and sound if the player
does not have the “inferno” state. If the player does not have
the “inferno” state, then add it. Otherwise set the player’s
animation sequence frame.

16 aurarangecalc SorStartTelekinesis - Check the range of the skill using the
“aurarangecalc” value and ensure there is a valid monster or
player to target in the area

17 SorStartHydra - Check for a valid area and ensure that the
skill cannot be used in town

18 cltmissilec NecStartCurse - Validate and launch the client missile

19 cltmissilec NecStartTeeth - Validate and create the missile to launch in
a direction based on the cast position

20 NecStartRaiseSkeleton - Check that the target corpse is
valid

21 NecStartCExplosion - Check that there is a valid enemy
corpse

22 NecStartBonePrison - Check for a valid area and ensure that
the skill cannot be used in town

23 NecStartIronGolem - Check that the target item on the
ground is valid and that it is identified

24 cltmissilea
cltmissileb
cltmissilec

NecStartRevive - Validate that the target monster can be
revived. Based on the monster’s “OverlayHeight” value (See
monstats2.txt), create 1 of the 3 client missiles in a random
direction. If the monster’s “OverlayHeight” value equals 1,
then create “cltmissileb”. If the monster’s “OverlayHeight”
value equals 3, then create “cltmissilec”.

25 dosound a
Param1

PalStartCharge - If the player is in melee range of the target,
then start an attack. If the caster unit is a player then play the
“dosound a” sound. If the caster unit is a monster, then play
the monster’s skill sound (see monsounds.txt). Ensure that
the target is not in an uninterruptable state. Adjust the
movement speed of the caster unit. Set the caster unit’s
movement velocity speed percent so the skill’s “Param1”
value. Add movement parameters for the skill function.

26 BarStartFindHeart - Check that the target corpse is valid and
has not been used yet

27 cltcalc1 BarStartDoubleSwing - Adjust the caster unit’s attack speed
based on the “cltcalc1” field

28 BarStartFindItem - Check that the target corpse is valid and
has not been used yet

29 aurarangecalc BarStartLeap - Check that the caster unit is not in an
uninterruptible state. If the caster unit is a monster, then find
a valid location past the target unit. If the caster unit is not a
monster, then find a valid location and ensure that the target
location is not in town. Store the target location. The target
range is controlled by the “aurarangecalc” field.

30 BarStartLeapAttack - Check that the caster unit is not in an
uninterruptible state. If the player is in melee range of the
target, then start an attack. Validate the target location,
checking for proper player collision. Store the target location.

31 BarStartWhirlwind - Check that the caster unit is not in an
uninterruptible state. Modify the caster unit’s collision to only
collide with walls and objects. Adjust the caster unit’s
velocity. Add movement parameters for the skill function.
Minimum whirlwind distance equals 5.

32 cltmissilea
cltmissileb

MonStartMaggotUp - Set the caster unit to be attackable and
selectable. If the current area level is in Act 2, then create
the “cltmissileb” missile, otherwise create the “cltmissilea”
missile. Find a valid location, checking for collision, and then
warp the caster unit to that location.

33 MonStartMaggotDown - Set the unit to no longer be
attackable or selectable and remove its collision

34 MonStartAndariel - Validate the target enemy and store the
target unit’s location for the skill function

35 MonStartSwarmMove - Find a valid path with a proper
distance, and set movement parameters

36 MonStartNest - Validate the monster class, store the target
location, and set the collision in the caster unit’s location to
be a monster collision

37 MonStartSubmerge - Set the unit to no longer be attackable
or selectable

38 MonStartEmerge - Set the unit to be attackable or selectable

39 MonStartResurrect - Unhide the unit

40 cltcalc1 MonStartDiabLight - Use the “cltcalc1” field to calculate a
periodic delay for spawning missile and store that value in a
parameter

41 MonStartDiabRun - Clear all function flags on the skill

42 calc1
calc2

MonStartMosquito - Validate the target enemy. Use the
“calc1” and “calc2” fields as min and max values to randomly
select a value to control a loop count, and store that loop
count as a parameter for the skill function.

43 cltmissilea MonStartCurse - Validate and launch the client missile

44 MonStartHellMeteor - Create the following missiles:
“hellmeteordown”, “hellmeteorball”, “hellmeteorup”,
“hellmeteorball”, “hellmeteorlaunch1”, “hellmeteorlaunch2”

45 aurastate
cltoverlaya
cltoverlayb

DruStartWereWolf - Add the “cltoverlayb” overlay to the
caster unit if the unit has the “aurastate” state. Otherwise,
add the “cltoverlaya” overlay to the caster unit.

46 aurastate
aurastat1
cltmissilea
prgsound

MonStartBaalTaunt - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile. Create the “baal taunt control” missile.
Play the “prgsound” sound.

47 aurastate
aurastat1
cltcalc1
cltmissilea
cltmissileb
cltmissilec

MonStartCatapultDropMissile - Based on the “progressive”
flag, the “aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Create the missile and use the “cltcalc1”
value to set the missile’s fall rate.

48 cltmissilea MonStartTeleport2 - Create the missile at the target location

49 cltmissilea
cltmissileb
cltcalc1

MonStartVines - Create the “cltmissilea” missile. Use the
“cltcalc1” value to control the number of created “cltmissileb”
missiles.

50 MonStartDeathSentry - Validate the target enemy and store
the target unit’s location for the skill function

51 sMonStartFenrisRage - Validate the target enemy corpse.
Store the target unit’s location and unit class for the skill
function.

52 calc2 MonStartInfernoSentry - Add the “inferno” state to the caster
unit if it is not already added. Use the “calc1” field to control
the animation frame tick and store the value for the skill
function.

53 calc1 AmaStartFend2 - Find at least an initial valid target and track
the max targets to attack using the “calc1” value. Have the
caster unit face the target unit.

cltdofunc - Client Do function. This controls how the skill works when it finishes being
cast, on the client side. This uses a code value to call a function, affecting how certain
fields are used.

Code Parameters Description

0 Do nothing

1 DoAttack - If this is a ranged attack, then launch the client
missile. Otherwise, apply damage to the target.

2 DoThrow - If the weapon is a “Missile Potion” item type then
launch a missile using the lob function. Otherwise, launch a
missile with the normal linear function.

3 AssDoPsychicHammer - Validate the
“AssStartPsychicHammer” function

4 AssDoDragonClaw - Check the number of attacks. Roll back
the animation by 100%.

5 prgcalc1
prgcalc2
prgcalc3
aurarangecalc
aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

AssDoShockField - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Get the number of missiles using the
“progcalc#” values, based on the number of progressive
charges. Get the range by using the “aurarangecalc” field.
Create the calculated number of missiles using the lob
function.

6 prgcalc1
prgcalc2
prgcalc3
aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

AssDoBladeFury - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Get the number of missiles using the
“progcalc#” values, based on the number of progressive
charges. Every periodic delay create a client missile and set
the Z position to 15. If the caster unit has the “inferno” state,
then repeat the sequence do frame.

7 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

AssDoDragonTail - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Create the client missile and set the
caster unit’s mode event.

8 aurarangecalc
cltmissilea
cltmissileb

AssDoMindblast - Create the “cltmissilea” missile at the
target location. Use the “aurarangecalc” field to calculate the
area radius value of the missile. Set the missile’s spawn
class to “cltmissileb”.

9 prgcalc1
prgcalc2
prgcalc3
aurarangecalc
aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

AssDoMissileDisc - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Get the number of missiles using the
“progcalc#” values, based on the number of progressive
charges. Get the radius by using the “aurarangecalc” field.
Create a ring of client missiles where the number of missile
depends on the size of the radius value.

10 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

AssClawsOfThunderLvl2 - Based on the “progressive” flag,
the “aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Create the client missile where its velocity
is calculated based on the skill level instead of the missile
level.

11 prgcalc1
prgcalc2
prgcalc3

AssClawsOfThunderLvl3 - Based on the “progressive” flag,
the “aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the

aurarangecalc
aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

“aurastat1” value. Get the number of missiles using the
“progcalc#” values, based on the number of progressive
charges. Use the “aurarangecalc” field to calculate the
number of missiles. Create the client missiles using random
pattern directions.

12 prgoverlay
prgsound
aurastate
aurastat1

AssTigerStrike - Based on the “progressive” flag, if the
caster unit has the “aurastate” state, or if the “aurastat1”
field value is greater than 0, determine whether to add the
overlay and sound on the caster unit. If the caster unit has
progressive charges, then increase the index of the overlay
and the sound by 1 per charge and add those overlay and
sounds instead.

13 prgoverlay
prgsound
aurastate
aurastat1

AssCobraStrike - Based on the “progressive” flag, if the
caster unit has the “aurastate” state, or if the “aurastat1”
field value is greater than 0, determine whether to add the
overlay and sound on the target unit. If the caster unit has
progressive charges, then increase the index of the overlay
and the sound by 1 per charge and add those overlay and
sounds instead.

14 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

AssRoyalStrikeMeteorLvl1 - Based on the “progressive”
flag, the “aurastate” field, or the “aurastat1” field, validate
the “cltmissilea” missile or use the other missiles based on
the “aurastat1” value. Create the selected client missile at
the target location.

15 prgcalc1
prgcalc2
prgcalc3
aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

AssRoyalStrikeChaosIce - Based on the “progressive” flag,
the “aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Get the number of missiles using the
“progcalc#” values, based on the number of progressive
charges. Create the number of selected client missiles using
randomized directions.

16 dosound a
dosound b

AmaDoJab - On the frame event of type “Sound”, if the
caster unit is a player then play the “dosound a” sound, or if
the caster unit is a monster than play the “dosound b” sound

17 cltmissilea
cltmissileb
calc1
calc2

AmaDoMultipleShot - If the weapon class is not equal to a
“bow” then use “cltmissileb”, otherwise use “cltmissilea”.
Use the “calc1” value to determine the number of missiles to
create. Use the “calc2” value to determine the activation
frame of the missiles. Create the missiles.

18 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

AmaDoGuidedArrow - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Create the selected client missile with

flags of either following a target or going to a location to be
retargeted later.

19 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec
calc1

AmaDoChargedStrike - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Use the “calc1” value to determine the
number of missiles to create. Create the missiles that move
in a randomized path towards the direction.

20 aurarangecalc
cltmissilea
cltmissileb
Param6

AmaDoStrafe - Use “aurarangecalc” to determine the skill
range. The max targets and current target are controlled by
a saved parameter. If the weapon class is not equal to a
“bow” then use “cltmissileb”, otherwise use “cltmissilea”.
Use the “Param6” value to determine the percentage of
animation frames to rollback. Find the next target to attack.
Create a client missile, making the caster unit face the
direction, and update the target count parameter.

21 Param2 AmaDoFend - Use the weapon range to determine the skill
range. Find the next valid target to attack and then update
the maximum targets to attack next time. Use the “Param2”
value to determine the percentage of animation frames to
rollback. Based on the hit class, determine what weapon
sound to play.

22 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec
calc1
calc2

AmaDoLightningStrike - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Use the “calc1” value to determine the
range of the missile to find the next target. Use the “calc2”
value to determine the maximum number of chain hits for
the missile. Create the missile targeting the target unit.

23 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec
calc1

SorDoChargedBolt - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Use the “calc1” value to determine the
number of missiles to create. Create the missiles that move
in a randomized path towards the direction.

24 cltmissilea
cltmissileb
calc1

SorDoInferno - Randomly select between either “cltmissilea”
or “cltmissileb”. Use the “calc1” value to determine the range
of the missile. Create the client missile and adjust the caster
unit’s animation frames. If the caster unit still has the
“inferno” state, then repeat the animation do frame.

25 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec
cltcalc1

SorDoFrostNova - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Use the “cltcalc1” value to determine the
additional velocity to add to the missiles created. Create a
ring of missiles.

26 cltmissilea
calc1

SorDoFirewall - Validate the target location. Validate that
the missile create has a missile linked in its “SubMissile1”
field (see Missiles.txt). Use the “calc1” value to determine
the maximum number of fire wall spawning missiles. Create
2 of the “cltmissilea” missiles thar are launched in opposite
directions. Create 1 of the “cltmissilea” missile’s sub missile.

27 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec
cltcalc1

SorDoChainLightning - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Use the “calc1” value to determine the
maximum number of chain hits for the missile. Create the
missile targeting the target unit and update the number of
chain hits in a parameter.

28 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

SorDoMeteor - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Validate that the target location is valid
and then create the missile.

29 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

SorDoFrozenOrb - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Launch the selected client missile.

30 aurarangecalc
cltmissilea

NecDoCurse - Use “aurarangecalc” to determine the radius
of the skill and always subtract a value of 3 (Min value = 2).
Create the client missile at the cursor location and also
create a light at the location with RGB values equal to 255,
0, 0.

31 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

NecDoRaiseSkeleton - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Launch the selected client missile facing
the directions saved in the parameters.

32 cltmissilea
cltmissileb
cltmissilec
tgtsound

NecDoCExplosion - Create “cltmissilea” at the target
location facing a random direction. If the target monster is
“small” then spawn 1 “cltmissilea”. If the target monster is
“large” then spawn 3 “cltmissilea” missiles in a radius value
of 3, and if that missile has a “SubMissile1” value, then also
spawn 4 sub missiles in a radius value of 2. If the target
monster is neither “small” nor “large”, then spawn 2
“cltmissilea” missiles in a radius value of 2, and spawn 3 of
its sub missiles in a radius value of 1. (See Missiles.txt and
monstats2.txt). Spawn 1 “cltmissileb” normally. Spawn 1
“cltmissilec” missile with its level equal to 2. If there is no
target enemy, then play the “tgtsound” sound.

33 cltmissilea
cltmissileb
cltmissilec
tgtsound

NecDoPoisonExplosion - Create “cltmissilea” at the target
location facing a random direction. Spawn an inner and
outer radial ring of “cltmissileb” missiles, based on the
missile’s “Param1” and “Param2” values (See Missiles.txt).
Spawn 1 “cltmissilec” missile with its level equal to 2. If there
is no target enemy, then play the “tgtsound” sound.

34 cltmissilea
cltcalc1

PalDoSacrifice - Validate the target enemy and spawn the
client missile in a random direction, where the missile can
receive additional range that is randomly selected between
0 and the “cltcalc1” value.

35 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

PalDoBlessedHammer - Based on the “progressive” flag,
the “aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Launch the selected client missile with a
spiral path.

36 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

PalDoFistOfHeavens - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Launch the selected client missile and
save the target unit type and ID as parameters.

37 PalDoCharge - Setup a sequence of frames to play the
animation. If the caster unit is a player or monster, then play
its attack sound at the sound frame event. Set the unit’s
animation and frame length and order the unit to move to a
location or the previously targeted unit. If the player does
not need to move, then attack the target or a nearby target.

38 BarDoFindHeart - If the target is valid, then set the mode
event and create blood missiles from the monster (see
“bleed” in monstats2.txt)

39 BarDoDoubleSwing - If the caster unit’s animation sequence
frame is less than 6, then play the weapon sound and have
the character turn to face the target. Otherwise, have the
caster unit find a proper target and face that target.

40 BarDoFindItem - If the target is valid (see “soft”
monstats2.txt), then set the mode event and create blood
missiles from the monster (see “bleed” in monstats2.txt)

41 cltmissilea
cltmissileb
cltmissilec

BarDoGrimWard - If the target is valid (see “soft”
monstats2.txt) and there is valid space at that target’s
location, then create one of the following missiles. By
default, use the “cltmissilea” missile. If the monster is large
(see “large” in monstats2.txt), then use the “cltmissilec”
missile. If the monster is small (see “large” in monstats2.txt),
then use the “cltmissileb” missile. Also, always create a
“corpseexplosion” missile.

42 BarDoDoubleThrow - Check that the attacking weapon is
throwable and shoot a missile based on the weapon’s

missile class. If the weapon’s item type is a “Missile Potion”
(see ItemTypes.txt), then use the lobbing missile launch
function, otherwise use the normal linear missile launch
function.

43 BarDoLeap - Check different flags and parameters to
determine when to stop leaping. There are special cases to
handle the “sandleadper1” and “ancientbarb1” monsters.

44 BarDoLeapAttack - Check different flags and parameters to
determine when to stop leaping. After leaping, if there is a
valid target, then attack the target.

45 BarDoWhirlwind - Continue to whirlwind based until at
reaching the target location or if the skill flags have been
changed.

46 MonDoMagottEgg - Set the unit’s animation sequence rate
to 0

47 MonDoMaggotDown - When the unit’s animation frame
reaches 0, then set the unit’s animation sequence rate to 0

48 cltmissilea

MonDoAndariel - Based on the unit’s current direction,
launch the missile in one of 8 directions

49 calc1
calc2

MonDoSwarmMove - Set the unit’s animation sequence
start and stop frames based on the skill’s calculation values

50 MonDoNest - Remove the monster collision at the target
location

51 cltmissilea MonDoGargoyleTrap - Launch the missile in one of 4
directions.

52 MonDoSubmerge - This equals the “MonDoMaggotDown”
function (Code = 47)

53 aurarangecalc
cltmissilea
cltcalc1

MonDoFetishAura - Create a disc of missiles where
“aurarangecalc” controls the disc radius size (Minimum
value = 1) and “cltcalc1” controls the density of missiles
created (higher value means less missiles).

54 cltmissilea
cltmissileb
calc1

sMonDoFetishInferno - Randomly create 2 of either
“cltmissilea” or “cltmissileb” missiles. Use “calc1” to
determine the range of the missile if it is greater than 0,
otherwise use the missile’s “Param2” value (See
Missiles.txt).

55 cltmissilea
calc1
calc2

MonDoPrimePoisonNova - Creates 8 missiles in different
directions using a velocity set by the missile’s “Param1”
value (See Missiles.txt). Then uses “calc2” to control how
many additional missiles to create using a velocity set by the
missile’s “Param2” value. Uses “calc1” to set the missile’s
subloops.

56 cltmissilea
cltcalc1
calc1

MonDoDiabLight - Create the missile at an interval
controlled by the “cltcalc1” value. Use “calc1” to determine
the range of the missile if it is greater than 0, otherwise use

the missile’s “Param2” value (See Missiles.txt). Also use the
monster’s inferno values to set the animation frames (see
monstats2.txt)

57 cltmissilea
calc1

MonDoFingerMageSpider - Create the missile with its
subloops controlled by “calc1” and have that missile
positioned and face the caster unit

58 cltmissilea
calc1

MonDiabWallMaker - Create a number of missiles controlled
by the “calc1” value where their pathing and direction is
randomized

59 calc1
Param1
Param2
Param3
Param4
Param5
Param6

MonDoDiabRun - Modifies the caster unit’s movement
speed by a percentage controlled by “calc1” and controls its
animations to adhere to this run mode. The 6 parameter
values controls the run animation’s stop frame length, stop
event frame, start event frame, start frame length, loop
repeat event frame, loop frame length, and loop start event
frame.

60 cltmissilea
calc1

MonDoDesertTurret - Fire a number of missiles controlled
by the “calc1” value that are directed in 8 possible directions

61 cltmissilea MonDoArcaneTower - Fire missiles in all possible directions
with particles

62 Param1 MonDoMosquito - Check that the caster unit cannot melee
the target and then repeat the animation for a number of
loops saved in a parameter, where “Param1” controls the
frame to repeat the animation.

63 cltmissilea
cltmissileb

MonDoRegurgitatorEat - Create 1 “cltmissilea” missile in a
random direction. Create 5 “cltmissileb” missiles in a radius
value of 4.

64 MonDoQueenDeath - Repeatedly loop the animation using
hardcoded frame counts, and then set the unit to Dead
mode when finished

65 aurarangecalc
cltmissileb

MonDoCurseRadius - Find a valid target and create a
“cursecenter” missile. Then create the “cltmissileb” missile
with a radius controlled by “aurarangecalc”

66 MonDoHireFireMissile - Use the lob launch function or
normal linear launch function when creating the missile

67 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec
calc1

DruDoFirestorm - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Launch a number of selected client
missiles, controlled by the “calc1” value. These missiles has
randomized directions and pathing, and they have an
increased animation rate.

68 aurastate
aurastat1
cltmissilea
cltmissileb

DruDoTwister - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Launch a number of selected client

cltmissilec
calc1

missiles, controlled by the “calc1” value. These missiles
start with a linear direction and then change to randomized
pathing.

69 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec
calc1

DruDoTornado - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Launch a number of selected client
missiles, controlled by the “calc1” value. These missiles
start with a linear direction and then change to randomized
pathing, and they have an increased animation rate.

70 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

MonDoWakeofFire - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Launch the selected missile in the
opposite direction.

71 cltmissilea
cltmissileb
cltcalc1
cltcalc2

MonDoInferno - Randomly create 1 of either “cltmissilea” or
“cltmissileb” missiles. Use “cltcalc1” to control the missile’s Z
offset. Use “cltcalc2” to control add to the missile’s range,
which is also determined by the missile’s “Param2” value
(See Missiles.txt)

72 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec
cltcalc1

MonDoImpFireBall - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Launch the missile to the target location.
Use the “cltcalc1” value to control the missile’s Z offset
value.

73 cltmissileb MonDoTeleport2 - Create the missile at the caster unit’s
location with its skill level set to 1

74 cltmissileb MonDoTeleport3 - Create the missile at the caster unit’s
location with its skill level set to 1. Also create a particle and
add it to the target unit.

75 Param1
Param2
Param3
Param4

MonDoSiegeBeastStomp - Shake the camera screen,
where the parameters control the magnitude, shake build up
duration, shake loop duration, and shake fade duration
(controlled in frames where 25 frames = 1 second).

76 cltmissilea
cltmissileb
calc1

MonDoDeathMauler - Continuously create “cltmissileb”
missiles as the trail missile’s using the missile’s “Param1”
and “Param2” values (See Missiles.txt) to control the
frequency and range/frames of the missile’s creation. Create
the “cltmissilea” missile with an animation rate controlled by
“calc1”, set this missile to not draw, and update its range
and activation frame delay based on the “cltmissileb”
missile’s “Param1” and “Param2” values.

77 cltmissilea
cltmissileb
cltcalc1

MonDoInfernoSentry - Randomly create 1 of either
“cltmissilea” or “cltmissileb” missiles. Use “cltcalc1” to
control the missile’s Z offset. Use “calc1” to control the

calc1 missile range duration. Repeat the Do frame while the
caster unit has the “inferno” state.

78 cltmissilea
cltmissileb
prgsound

MonDoDeathSentry - Create the “cltmissilea” missile at the
target location and play the “prgsound” sound. Then create
the “cltmissileb” missile at the target location.

79 cltmissilea MonDoFenrisRage - Create the “cltmissilea” missile at the
target location

80 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec
calc1
calc2

MonDoBaalInferno - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Create a number of the selected missiles
where “calc1” controls the number of missiles created, and
“calc2” controls the range duration of the missiles. Repeat
the Do frame while the caster unit has the “inferno” state.

81 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

MonDoBaalCold - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Launch the selected missile to the target
location.

82 Param5
Param6

MonStartBaalCExplode - Use “Param5” and “Param6” to
calculate the baseline and increase per skill level change in
the radius to find a target. Search for valid dead targets and
create a “baalcorpseexplodedelay” missile for each target
found.

83 prgcalc1
prgcalc2
prgcalc3
aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec
aurarangecalc
Param2

ApplyRoyalStrikeLvl2 - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Get the number of missiles using the
“progcalc#” values, based on the number of progressive
charges, and if they are equal to or less than 0, then use the
“aurarangecalc” value instead. Create the missile, using the
“Param2” value to control the number of chain hits that the
missile bounces.

84 cltmissilea
prgoverlay

SorDoThunderStorm - Launch the missile at the target’s
position, with a starting Z position equal to 280 and a
starting velocity equal to -40. Also add the overlay to the
target unit.

85 ItemDoOpenWounds - Create a blood missile from the unit
every 5 frames (see “bleed” in monstats2.txt)

86 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec

PalDoSanctuary - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Use the “aurarangecalc” value to

aurarangecalc determine the radius to randomly create missiles and also
the number of missiles to create.

87 aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec
cltcalc1
cltcalc2
cltcalc3

SorApplyShiverArmor - Based on the “progressive” flag, the
“aurastate” field, or the “aurastat1” field, validate the
“cltmissilea” missile or use the other missiles based on the
“aurastat1” value. Create the selected missile using the lob
function. Use “cltcalc1” to control the delay between creating
missiles. Use “cltcalc2” to control the radius to create the
missile. Use “cltcalc3” to control the vertical height of the
missile when it is created.

88 MonApplyAttached - Attach the source unit on the caster
unit.

89 cltmissilec
cltmissiled
cltcalc1

MonDoVineBeast - Validate that the caster unit is a monster
type. Validate that the skill used is the “Vine Attack” skill and
get its stats, otherwise use a default level 1 “Vine Attack”
skill. Use the “cltcalc1” value to determine the frame delay
between creating missiles and also the minimum distance
between missiles created. If the current mode of the unit is
“Walk” then randomly choose between creating the
“cltmissilec” or “cltmissiled” missile. If the current mode of
the unit is “Neutral” then kill any existing old missile and
create the “cltmissiled”.

90 cltmissilea
cltmissileb
cltmissilec
prgsound
cltcalc1
cltcalc2

DruDoHurricane - Play the “prgsound” sound and stop
playing it if the caster unit is in town. Use “cltcalc1” to how
many sets of 3 missiles to create at a time, at a random
height. Randomly choose between one of the 3 missiles to
create each time, and use “cltcalc2” to control the maximum
Z height position of the missile.

91 cltmissilea
cltmissileb

DruDoVolcano - Create both missiles at the valid target
position

92 cltmissilea
cltmissileb
cltcalc1
cltcalc2
cltcalc3
aurarangecalc

DruDoArmageddon - Create both missiles with a negative
fall rate and slide rate. Use the “aurarangecalc” value to
control a radius value, but this value is not used. Use the
“cltcalc1” value to control the frame count for determining
the starting height and offset. Use the “cltcalc2” value to
control the missile fall rate per frame. Use the “cltcalc3”
value to control the missile slide rate per frame.

93 cltmissileb MonDoCorpseCycler - Validate the target unit, and create
the “cltmissileb” missile on the target and 3 blood missiles
(see “bleed” in monstats2.txt)

94 cltmissilea MonDoDoomKnightMissile - Create the “cltmissilea” using
either the lob function or the normal linear function,
depending on the “lob” flag. Also select the missile or up to
3 index values higher, depending on the monster’s graphics
variation for the “Special 3” component variation.

95 cltmissilea MonDoNecroMageMissile - Create the “cltmissilea” using
either the lob function or the normal linear function,
depending on the “lob” flag. Also select the missile or up to
3 index values higher, depending on the monster’s graphics
variation for the “Special 4” component variation.

96 aurarangecalc
aurastate
aurastat1
cltmissilea
cltmissileb
cltmissilec
calc1

SorDoChainLightning2 - Based on the “progressive” flag or
the “aurastate” field, create the “cltmissilea” missile.
Otherwise, use one of the 3 client missiles based on the
“aurastat1” value. Create the missile and use the “calc1”
value to set the number of chain hits.

cltprgfunc1 to (cltprgfunc3) - Controls which Client Do function is used when the skill
is executed while having a progressive charge number equal to 1, 2, and 3,
respectively. (uses “cltdofunc” values)
cltmissile - Used as a parameter for controlling what main missile is used for the client
functions used (See “Missile” field in Missiles.txt)
cltmissilea (to cltmissileed) - Used as a parameter for controlling what secondary
missile is used for the client functions used (See “Missile” field in Missiles.txt)
cltcalc1 (to cltcalc3) - Calculation Field. Use as a possible parameter for controlling
values for the client functions.

warp - Boolean Field. If equals 1 and the skill uses a function that involves
warping/teleporting, then check for a scene transition loading screen, if necessary. If
equals 0, then ignore this.
immediate - Boolean Field. If equals 1 and the skill has a periodic function, then
immediately perform the skill’s function when the periodic skill is activated. If equals 0,
then wait until the skill’s first periodic delay before performing the skill’s function.
enhanceable - Boolean Field. If equals 1, then the skill will be included in the plus to all
skills item modifier. If equals 0, then the skill will not be included in the plus to all skills
item modifier.
attackrank - Controls the skill’s AI score value for determining what is the best target
for the AI. The higher the value, then the more likely the AI will select a target with this
skill equipped.

noammo - Boolean Field. If equals 1, then the skill will not check that weapon’s ammo
when performing an attack. This relies on the “Shoots” field from the ItemType.txt file. If
equals 0, then the weapon will consume its ammo when being used by the skill.
range - Determines how the unit uses the skill, which affects the weapon requirements
and the type of attack used

Code Description

none No restrictions to use the skill

h2h This is a melee skill, which requires a melee weapon

rng This is a ranged skill, which requires a ranged weapon

both This is both a melee and ranged skill, which can use
either a melee or ranged weapon

loc This is a location based skill, which ignores the weapon
equipped and instead uses the player’s location

weapsel - If the unit can dual wield weapons, then this field will control how the
weapons are used for the skill

Code Description

0 Use the Left or Right Hand weapon

1 Use the Left Hand weapon

2 Use the Left and/or Right Hand weapon

3 Always use both weapons

4 Ignore the weapon used

itypea1 (to itypea3) - Controls what Item Types are included, or allowed, when
determining if this skill can be used (See the “Code” field from ItemTypes.txt)
etypea1 & etypea2 - Controls what Item Types are excluded, or not allowed, when
determining if this skill can be used (See the “Code” field from ItemTypes.txt)
itypeb1 (to itypeb3) - Controls what alternate Item Types are included, or allowed,
when determining if this skill can be used (See the “Code” field from ItemTypes.txt).
This acts as a second set of Item Types to check.
etypeb1 & etypeb2 - Controls what alternate Item Types are excluded, or not allowed,
when determining if this skill can be used (See the “Code” field from ItemTypes.txt).
This acts as a second set of Item Types to check.

anim - Controls the animation mode that the player character will use when using this
skill. Setting the mode to Sequence (SQ) will cause the player character to play a time
controlled animation sequence, utilizing certain sequence fields.

Code Description

DT Death

NU Neutral

WL Walk

RN Run

GH Get Hit

TN Town Neutral

TW Town Walk

A1 Attack 1

A2 Attack 2

BL Block

SC Cast

TH Throw

KK Kick

S1 Skill 1

S2 Skill 2

S3 Skill 3

S4 Skill 4

DD Dead

SQ Sequence

KB Knockback

seqtrans - Uses the same inputs as the “anim” field. If the “anim” field equals SQ
(Sequence) and this field equals SC (Cast), then the sequence animation speed can be
modified by the faster cast rate stat modifier.

monanim - Controls the animation mode that the monster will use when using this skill.
This is similar to the “anim” field except with monster units using the skill instead of
player units.

Code Description

DT Death

NU Neutral

WL Walk

GH Get Hit

A1 Attack 1

A2 Attack 2

BL block

SC Cast

S1 Skill 1

S2 Skill 2

S3 Skill 3

S4 Skill 4

DD Dead

KB Knockback

xx Sequence

RN Run

seqnum - If the unit is a player and the “anim” used for the skill is a Sequence, then this
field will control the index of which sequence animation to use. These sequences are
specifically designed for certain skills, and each sequence has a set number of frames
using certain animations.

Code Description

0
(or empty)

Do nothing

1 Jab

2 Sacrifice

3 Chastise

4 Charge

5 Defiance

6 Inferno

7 Strafe

8 Impale

9 Fend

10 Whirlwind

11 Double Swing

12 Lightning

13 Leap

14 Leap Attack

15 Double Throw

16 Tiger Fist

17 Projection

18 Arctic Blast

19 Triple Kick

20 Dragon Breath

21 Dragon Flight

22 Druid Unmorph

23 Assassin Blade Fury

seqinput - For skills that can repeat, this controls the number of frames to wait before
the “Do” frame in the sequence. This acts as a delay in frames (25 Frames = 1 second)
to wait within the sequence animation before it is allowed to be cast again or for looping
back to the start of the sequence, such as for the Sorceress Inferno skill.
durability - Boolean Field. If equals 1 and when the player character ends an animation
mode that was not Attack 1, Attack 2, or Throw, then check the quantity and durability of
the player’s items to see if the valid weapons are out of ammo or are broken. If equals
0, then ignore this.
UseAttackRate - Boolean Field. If equals 1, then the current attack speed should be
updated after using the skill, relative to the “attackrate” stat (See ItemStatCost.txt), and
if the skill was an attacking skill. If equals 0, then the attack speed will not be updated
after using the skill.

LineOfSight - Controls the skill’s collision filters for valid target locations when it is
being cast

Code Description

0 No collision filter

1 Missile Barrier

2 Player Path - Walls, no pathing, objects, doors, no player pathing

3 Player Monster - Monsters, Players

4 Player Flying - Missile barriers, doors

5 Radial Barrier - Missile barriers, doors, walls

TargetableOnly - Boolean Field. If equals 1, then the skill will require a target unit in
order to be used. If equals 0, then ignore this.
SearchEnemyXY - Boolean Field. If equals 1, then when the skill is cast on a target
location, it will automatically search in different directions in the target area to find the
first available enemy target. If equals 0, then ignore this. This field can be overridden if
the “SearchEnemyNear” field is enabled.
SearchEnemyNear - Boolean Field. If equals 1, then when the skill is cast on a target
location, it will automatically find the nearest enemy target. If equals 0, then ignore this.
SearchOpenXY - Boolean Field. If equals 1, then automatically search in a radius of
size 7 in around the clicked target location to find an available unoccupied location to
use the skill, testing for collision. If equals 0, then ignore this. This field can be
overridden if the “SearchEnemyNear” or “SearchEnemyXY” field is enabled.

SelectProc - Uses a function to check that the target is a corpse with various
parameters before validating the usage of the skill

Code Description

0 Do nothing

1 CorpseExplode - Check that the target is a corpse

2 RaiseSkeleton - Check that the target is a monster corpse, and that the
corpse was a unit that has a velocity (if the unit does not move, then the
corpse cannot be used)

3 Revive - Use the RaiseSkeleton function (Code = 2) and that the monser has
a switchable AI

4 HeartMonster - Check that the target is a monster corpse and that the
monster has the “soft” flag enabled (see monstats2.txt)

5 ItemMonster - Check that the target is a monster corpse

6 WardMonster - Check that the target is a monster corpse and that the
monster has the “soft” flag enabled (see monstats2.txt)

TargetCorpse - Boolean Field. If equals 1, then the skill is allowed to target corpses. If
equals 0, then skill cannot target corpses.
TargetPet - Boolean Field. If equals 1, then the skill is allowed to target pets (summons
and mercenaries). If equals 0, then the skill cannot target pets.
TargetAlly - Boolean Field. If equals 1, then the skill is allowed to target ally units. If
equals 0, then the skill cannot target ally units.
TargetItem - Boolean Field. If equals 1, then the skill is allowed to target items on the
ground. If equals 0, then the skill cannot target items.
AttackNoMana - Boolean Field. If equals 1, then then when the caster does not have
enough mana to cast the skill and attempts to use the skill, the caster will default to
using the Attack skill. If equals 0, then attempting to use the skill without enough mana
will do nothing.
TgtPlaceCheck - Boolean Field. If equals 1, then check that the target location is
available for spawning a unit, testing collision. If equals 0, then ignore this. This is only
used for skills that monsters use to spawn new units.

KeepCursorStateOnKill - Boolean Field. If equals 1, then the mouse click hold state
will continue to stay active after killing a selected target. If equals 0, then after killing the
target, the mouse click hold state will reset.
ContinueCastUnselected - Boolean Field. If equals 1, then while the mouse is held
down and there is no more target selected, then the skill will continue being used at the
mouse’s location. If equals 0, then while the mouse is held down and there is no more
target selected, then the player character will cancel the skill and move to the mouse
location.
ClearSelectedOnHold - Boolean Field. If equals 1, then when the mouse is held down,
the target selection will be cleared. If equals 0, then ignore this.

ItemEffect - Uses a Server Do function (See “srvdofunc”) for handling how the skill is
used when it is triggered by an item, on the server side.
ItemCltEffect - Uses a Client Do function (See “cltdofunc”) for handling how the skill is
used when it is triggered by an item, on the client side.

ItemTgtDo - Boolean Field. If equals 1, then use the skill from the enemy target instead
of the caster. If equals 0, then ignore this.

ItemTarget - Controls the targeting behavior of the skill when it is triggered by an item.

Code Description

0
(or empty)

Default to targeting the attacker

1 Target the caster

2 Target a random location in a radius with
a size of 20. Also tests collision.

3 Target a random nearby corpse

4 Target the attacker, and if that attacker is
not found then target a previous attacker
or the previous attacker’s location

ItemCheckStart - Boolean Field. If equals 1, then use the skill’s Server Start function
(See “srvstfunc”) when the skill is trigged by an item. If equals 0, then the skill’s Server
Start function is ignored.
ItemCltCheckStart - Boolean Field. If equals 1, then when the skill is triggered by an
item, and if the target is dead and the skill has a Client Start function (See “cltstfunc”),
then add the “corpse_noselect” to the target. If equals 0, then ignore this.
ItemCastSound - Play a sound when the skill is used by an item event. Points to a
“Sound” value in the sounds.txt file.
ItemCastOverlay - Add a cast overlay when the skill is used by an item event. Points to
an “overlay” value in the Overlay.txt file.

skpoints - Controls the number of Skill Points needed to level up the skill
reqlevel - Minimum character level required to be allowed to spend Skill Points on this
skill
maxlvl - Maximum base level for the skill from spending Skill Points. Skill levels can be
increased beyond this through item modifiers.
reqstr - Minimum Strength attribute required to be allowed to spend Skill Points on this
skill
reqdex - Minimum Dexterity attribute required to be allowed to spend Skill Points on this
skill
reqint - Minimum Intelligence attribute required to be allowed to spend Skill Points on
this skill
reqvit - Minimum Vitality attribute required to be allowed to spend Skill Points on this
skill
reqskill1 (to reqskill3) - Points to a “skill” field to act as a prerequisite skill. The
prerequisite skill must be least base level 1 before the player is allowed to spend Skill
Points on this skill.

restrict - Controls how the skill is used when the unit has a restricted state (See the
“restrict” field in states.txt)

Code Description

0 None - The skill cannot be used when the unit has a restricted state

1 Any - The skill can be used in when the unit has any restricted state

2 State Only - The skill can only be used when the unit has a restricted
state (See “State1” to “State3”)

3 Pop State - The skill can be used at any time but when used, it will
remove the unit’s restrict states

State1 (to State3) - Points to a “state” field from the states.txt file. Used as parameters
for the “restrict” field to control what specific states will restrict the usage of the skill.

localdelay - Controls the Casting Delay duration for this skill after it is used (25 frames
= 1 second)
globaldelay - Controls the Casting Delay duration for all other skills with Casting Delays
after this skill is used (25 frames = 1 second)

leftskill - Boolean Field. If equals 1, then the skill will appear on the list of skills to
assign for the Left Mouse Button. If equals 0, then the skill will not appear on the Left
Mouse Button skill list.
rightskill - Boolean Field. If equals 1, then the skill will appear on the list of skills to
assign for the Right Mouse Button. If equals 0, then the skill will not appear on the Right
Mouse Button skill list.

repeat - Boolean Field. If equals 1 and the skill has no “anim” mode declared, then on
the client side, the unit’s mode will repeat its current mode (this can also happen if the
unit has the “inferno” state). If equals 0, then the unit will have its mode set to Neutral
when starting to use the skill.
alwayshit - Boolean Field. If equals 1, then skills that rely on attack rating and defense
will ignore those stats and will always hit enemies. If equals 0, then ignore this.

usemanaondo - Boolean Field. If equals 1, then the skill will consume mana on its do
function instead of its start function. If equals 0, then the skill will consume mana on its
start function, which is the general case for skills.
startmana - Controls the required amount of mana to start using the skill. This only
works with certain “srvstfunc” functions such as SorStartInferno (Code = 11) or
AssStartBladeFury (Code = 26).
minmana - Controls the minimum amount of mana to use the skill. This can control
skills that reduce in mana cost per level to not fall below this amount.
manashift - This acts as a multiplicative modifier to control the precision of the mana
cost after calculating the total mana cost with the “mana” and “lvlmana fields”. Mana is
calculated in 256ths in code which equals 8 bits. This field acts as a bitwise shift value,
which means it will modify the mana value by the power of 2. For example, if this value
equals 5 then that means divide the mana value of 256ths by 2^5 = 32 (or multiply the
mana by 32/256). A value equal to 8 means 256/256 which means that the mana of
256ths value is not shifted.
mana - Defines the base mana cost to use the skill at level 1
lvlmana - Defines the change in mana cost per skill level gained

interrupt - Boolean Field. If equals 1, then the casting the skill will be interruptible such
as when the player is getting hit while casting a skill. If equals 0, then the skill should be
uninterruptible.
InTown - Boolean Field. If equals 1, then the skill can be used while the unit is in town.
If equals 0, then the skill cannot be used in town.
aura - Boolean Field. If equals 1, then the skill will be classified as an aura, which will
make the skill execute its function periodically (using the “perdelay” field), based on the
if the “aurastate” state is active. Aura skills will also override a preexisting state if that
state matches the skill’s “aurastate” state. If equals 0, then ignore this.
periodic - Boolean Field. If equals 1, then the skill will execute its function periodically
(using the “perdelay” field), based on the if the “aurastate” state is active. If equals 0,
then ignore this.
perdelay - Calculation Field. Controls the periodic rate that the skill continuously
executes its function. Minimum value equals 5. This field requires “periodic” or “aura”
field to be enabled.
finishing - Boolean Field. If equals 1, then the skill will be classified as a finishing
move, which can affect how progressive charges are consumed when using the skill
and how the skill’s description tooltip is displayed. If equals 0, then ignore this.
prgchargestocast - Controls how many progressive charges are required to cast the
skill
prgchargesconsumed - Controls how many progressive charges are consumed when
the skill attack hits an enemy
passive - Boolean Field. If equals 1, then the skill will be treated as a passive, which
can mean that the skill will not show up in the skill selection menu and will not run a
server do function. If equals 0, then the skill is an active skill that can be used.
progressive - Boolean Field. If equals 1, then the skill will use the progressive
calculations to act as a charge-up skill that will add charges. This is only used for certain
skill functions and will generally require the usage of the “progcalc#” fields and the
“aurastat#” fields. If equals 0, then ignore this.
scroll - Boolean Field. If equals 1, then the skill can appear as a scroll version in the
skill selection UI, if the skill allows for the scroll mechanics and if the player has the
skill’s scroll item in the inventory. If equals 0, then ignore this.

calc1 (to calc4) - Calculation Field. It is used as a possible parameter for skill functions
or as a numeric input for other calculation fields.
Param1 (to Param8) - Integer Field. It is used as a possible parameter for skill
functions or as a numeric input for other calculation fields.

InGame - Boolean Field. If equals 1, then the skill is enabled to be used in-game. If
equals 0, then the skill will be disabled in-game.
ToHit - Baseline bonus Attack Rating that is added to the attack when using this skill at
level 1
LevToHit - Additional bonus Attack Rating when using this skill, calculated per skill level
ToHitCalc - Calculation Field. Calculates the bonus Attack Rating when using the skill.
This will override the “ToHit” and “LevToHit” fields if it is not blank.

ResultFlags - Controls different flags that can affect how the target reacts after being
hit by the skill attack. Uses an integer value to check against different bit fields by using
the “&” operator. For example, if the value equals 5 (binary = 101) then that returns true
for both the 4 (binary = 100) and 1 (binary = 1) bit field values.

Bit Field Value Binary Equivalent Value Description

1 0000000000000001 Hit

2 0000000000000010 Death

4 0000000000000100 Get Hit

8 0000000000001000 Knockback

16 0000000000010000 Block

32 0000000000100000 No Passive

128 0000000010000000 Dodge

256 0000000100000000 Avoid

512 0000001000000000 Evade

4096 0001000000000000 Ignore Friendly

8192 0010000000000000 Double Damage

16384 0100000000000000 Soft Hit

32768 1000000000000000 Two Hand-to-Hand Block

HitFlags - Controls different flags that can affect the damage dealt when the target is hit
by the skill. Uses an integer value to check against different bit fields by using the “&”
operator. For example, if the value equals 6 (binary = 110) then that returns true for both
the 4 (binary = 100) and 2 (binary = 10) bit field values.

Bit Field Value Binary Equivalent Value Description

1 00000000001 Do not add physical damage

2 00000000010 Do not add any damage

4 00000000100 No Life Steal

8 00000001000 No Mana Steal

16 00000010000 No Stamina Steal

32 00000100000 Use Source Damage

128 00010000000 No Triggered Events

256 00100000000 Bypass Undead

512 01000000000 Bypass Demons

1024 10000000000 Bypass Beasts

HitClass - Defines the skill’s damage routines when hitting, mainly used for determining
hit sound effects and overlays. Uses an integer value to check against different bit fields
by using the “&” operator. For example, if the value equals 6 (binary = 110) then that
returns true for both the 4 (binary = 100) and 2 (binary = 10) bit field values. There are
binary masks to check between Base Hit Classes and Hit Class Layers, which can
distinguish bewteen overlays or sounds are displayed.

Bit Field Value Binary Equivalent Value Description

Base Hit Classes

0 00000000 None

1 00000001 Hand to Hand

2 00000010 One Handed Swing Small

3 00000011 One Handed Swing Large

4 00000100 Two Handed Swing Small

5 00000101 Two Handed Swing Large

6 00000110 One Handed Thrust

7 00000111 Two Handed Thrust

8 00001000 Club

9 00001001 Staff

10 00001010 Bow

11 00001011 Crossbow

12 00001100 Claw

13 00001101 Do Overlay

Hit Class Layers

16 00010000 Double Layer

32 00010100 Fire Layer

48 00011110 Cold Layer

64 01000000 Lightning Layer

80 01010000 Poison Layer

96 01100000 Stun Layer

112 01110000 Bash Layer

128 10000000 Thorns Layer

144 10010000 Sanctuary Layer

160 10100000 Silent Voice Layer

176 10110000 Goo Layer

Kick - Boolean Field. If equals 1, then a separate function is used to calculate the
physical damage dealt by the skill, ignoring the following damage fields. This function
will factor in the player character’s Strength and Dexterity attributes (or Monster’s level)
to determine the baseline damage dealt. If equals 0, then ignore this.
HitShift - Controls the percentage modifier for the skill’s damage. This value cannot be
less than 0 or greater than 8. This is calculated in 256ths.

Value Description Percentage

8 256/256 100%

7 128/256 50%

6 64/256 25%

5 32/256 12.5%

4 16/256 6.25%

3 8/256 3.125%

2 4/256 1.5625%

1 2/256 .78125%

0 1/256 .390625%

SrcDam - Controls the percentage modifier for how much weapon damage is
transferred to the skill’s damage (Out of 128). For example, if the value equals 64, then
50% (64/128) of the weapon’s damage will be added to the skill’s damage.
MinDam - Minimum baseline physical damage dealt by the skill

MinLevDam1 (to MinLevDam5) - Controls the additional minimum physical damage
dealt by the skill, calculated using the leveling formula between 5 level thresholds of the
missile’s current level. The level thresholds are levels 2-8, 9-16, 17-22, 23-28, 29 and
beyond. These 5 level thresholds correlate to each field number.
MaxDam - Maximum baseline physical damage dealt by the skill
MaxLevDam1 (to MaxLevDam5) - Controls the additional maximum physical damage
dealt by the skill, calculated using the leveling formula between 5 level thresholds of the
missile’s current level. The level thresholds are levels 2-8, 9-16, 17-22, 23-28, 29 and
beyond. These 5 level thresholds correlate to each field number.
DmgSymPerCalc - Calculation Field. Determines the percentage increase to the
physical damage dealt by the skill.

EType - Defines the type of elemental damage dealt by the skill. If this field is empty,
then the related elemental fields below will not be used.

Code Description

(empty) None

fire Fire

ltng Lightning

mag Magic

cold Cold (Uses “ELen”)

pois Poison (Uses “ELen”)

life Life Drain

mana Mana Drain

stam Stamina Drain

stun Stun (Uses “ELen”)

rand Randomly select between Fire, Lightning, Magic, Cold, or Poison

burn Burning (Uses “ELen”)

frze Freeze (Uses “ELen”)

EMin - Minimum baseline elemental damage dealt by the skill
EMinLev1 (to EMinLev5) - Controls the additional minimum elemental damage dealt by
the skill, calculated using the leveling formula between 5 level thresholds of the skill’s
current level. The level thresholds are levels 2-8, 9-16, 17-22, 23-28, 29 and beyond.
These 5 level thresholds correlate to each field number.
EMax - Maximum baseline elemental damage dealt by the skill
EMaxLev1 (to EMaxLev5) - Controls the additional maximum elemental damage dealt
by the skill, calculated using the leveling formula between 5 level thresholds of the
missile’s current level. The level thresholds are levels 2-8, 9-16, 17-22, 23-28, 29 and
beyond. These 5 level thresholds correlate to each field.
EDmgSymPerCalc - Calculation Field. Determines the percentage increase to the total
elemental damage dealt by the skill.
ELen - The baseline elemental duration dealt by the skill. This is calculated in frame
lengths where 25 Frames = 1 second. These fields only apply to appropriate elemental
types with a duration.
ELevLen1 (to ELevLen3) - Controls the additional elemental duration added by the
skill, calculated using the leveling formula between 3 level thresholds of the missile’s

current level. The level thresholds are levels 2-8, 9-16, 17 and beyond. These 3 level
thresholds correlate to each field number. These fields only apply to appropriate
elemental types with a duration.
ELenSymPerCalc - Calculation Field. Determines the percentage increase to the total
elemental duration dealt by the skill.

aitype - Controls what the skill’s archetype for how the AI will handle using this skill.
This mostly affects the mercenary AI and Shadow Warrior AI, but some types are used
for general AI.

Code Description

0 None

1 Buff

2 Debuff

3 Summon

4 Melee

5 Ranged

6 Aura

7 Teleport

8 Heal

9 Resurrect

10 Passive

11 Area Range

12 Steal

13 Move Attack

aibonus - This is only used with the Shadow Master AI. This value is a flat integer
rating that gets added to the AI’s parameters when deciding which skill is most likely to
be used next. The higher this value, then the more likely this skill will be used by the AI.

cost mult - Multiplicative modifier of an item’s gold cost, only when the item has a stat
modifier with this skill. This will affect the item’s buy, sell, and repair costs (Calculated in
1024ths).
cost add - Flat integer modification of an item’s gold cost, only when the item has a stat
modifier with this skill. This will affect the item’s buy, sell, and repair costs. This is added
after the “cost mult” has modified the costs.

skilldesc.txt

Overview

This file controls a skill’s tooltip description and how it is displayed on the Skill Tree

Used by the following data files: Missiles.txt, Monstats.txt, skills.txt

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

skilldesc - The name of the skill description, as a reference for associated Data files

SkillPage - Determines which page on the Skill tree to display the skill

Code Description

0 Do not display on any skill tree page

1 Skill Tree Page 1

2 Skill Tree Page 2

3 Skill Tree Page 3

SkillRow - Determines which row on the Skill tree page to display the skill

Code Description

0 Do not display on the skill tree page

1 Row 1

2 Row 2

3 Row 3

4 Row 4

5 Row 5

6 Row 6

SkillColumn - Determines which column on the Skill tree page to display the skill

Code Description

0 Do not display on any skill tree page

1 Left Column

2 Middle Column

3 Right Column

ListRow - Determines which row the skill will be listed in, for the skill select UI.

Code Description

0 Common Skill Row

1 Skill Tree 1 Row

2 Skill Tree 2 Row

3 Skill Tree 3 Row

(Other) Skill will not appear in the Skill Selection UI

IconCel - Determines the icon asset for displaying the skill. This requires an ID value
based on the skillicon files. Class specific skills use their designated class skillicon files
(controlled by the “charclass” field in skills.txt), and non-class skills use the global
skillicon file. This will use the value as the standard icon to display, and the next value
(value + 1) as the button pressed icon display.

str name - Uses a string to display as the skill name

str short - Uses a string to display as the skill description in shortcuts or when selecting
a skill
str long - Uses a string to display as the skill description on the Skill Tree
str alt - Uses a string to display the skill name on the Character Screen when the skill is
selected

descdam - Use a function to calculate a skill’s damage and determine how to display it.
These functions sometimes require certain skill fields, especially the damage related
fields.

Code Parameters Description

0 null

1 ddam calc1
ddam calc2

Calculates the basic Attack damage (Uses function 7)
“ddam calc1” is used as a percent bonus
“ddam calc2” is used as a flat number bonus

2 Calculates the character’s kick damage

3 Calculates the character’s throwing weapon damage

4 Calculates the character’s left throwing weapon damage

5 Calculates damage using the equipped weapon damage and
the linked skill’s physical and elemental damage

6 Similar to function 5
Calculates the damage of the skill but with carry-over of
elemental damage from the source, such as a missile direct
hit and then a missile explosion

7 ddam calc1
ddam calc2

Calculates the damage of a skill, including damage bonuses
“ddam calc1” is used as a percent bonus
“ddam calc2” is used as a flat number bonus

8 ddam calc1
ddam calc2

Calculates the elemental damage of a skill as a periodic
damage (every 25 frames = 1 second)
“ddam calc1” is used as a multiplier of the damage (If equals 0
then default to 1)
“ddam calc2” is used as a divisor of the damage (If equals 0
then default to 1)

9 Calculates the elemental damage of a skill as a periodic
damage (every 25 frames = 1 second)
The damage is always multiplied by 3

10 Calculates damage based on the shield equipped and the
damage provided by the skill Holy Shield.
Also adds a damage percent bonus based on the linked skill’s
Param3 & Param4 values, plus the stat bonuses from
Strength and Dexterity

11 Calculates damage by obtaining the current weapon damage,
and then adds the following:
Fire percent damage based on the linked skill’s Calc1 field
Cold percent damage based on the linked skill’s Calc2 field

Lightning percent damage based on the linked skill’s Calc3
field

12 Calculates a skill’s damage based on the status of the
Concentration Aura state
If the game is in Expansion, then use the linked skill’s Calc1
field to define the bonus damage when using Concentration
If the game is in Classic, then use the Concentration skill’s
damage percent increase to define the bonus damage when
using Concentration

13 Calculates throwing damage, where it adds a damage percent
bonus defined by the linked skill’s Calc1 field

14 Calculates the damage of a skill, and uses the linked skill’s
Param5 field as an overall damage percent penalty

15 Calculates the total damage by adding a damage percent
bonus from the linked skill’s Param1 & Param2 linear increase
calculation, the progressive increase from charges from the
linked skill, and the boot damage

16 Calculates the total damage by adding a damage percent
bonus from the linked skill’s Calc1 value, the progressive
increase from charges from the linked skill, and the boot
damage

17 ddam calc1
ddam calc2

Calculates the damage of a skill and displays the physical
damage and the elemental damage separately
“ddam calc1” is used as a percent bonus
“ddam calc2” is used as a flat number bonus

18 ddam calc1
ddam calc2

Calculates the damage of a skill, including damage bonuses
(Uses function 7)
“ddam calc1” is used as a percent bonus
“ddam calc2” is used as a flat number bonus

19 ddam calc1
ddam calc2

Calculates the damage of a dual wielding attack. If not dual
wielding, then it calculates a normal attack damage
“ddam calc1” is used as a percent bonus
“ddam calc2” is used as a flat number bonus

20 ddam calc1
ddam calc2

Same as function 19, but does not add elemental damage

21 Calculates the throwing weapon damage with the linked skill’s
elemental damage added

22 Calculates the throwing weapon damage for dual wielding
throwing weapons and displays them as two values

23 Calculates the damage of a skill and displays the physical
damage and elemental damage separately
(Similar to function 17)

24 Calculates damage using the equipped weapon damage and
the linked skill’s physical and elemental damage
(Similar to function 5)

ddam calc1 & ddam calc2 - Integer calc value used as a possible parameter for the
descdam function
p1dmelem (to p3dmelem) - Used for skills that have charge-ups to display the damage
on the Character Screen, controls the elemental type for that charge
p1dmmin (to p3dmmin) - Used for skills that have charge-ups to display the damage
on the Character Screen, controls the minimum damage for that charge
p1dmmax (to p3dmmax) - Used for skills that have charge-ups to display the damage
on the Character Screen, controls the maximum damage for that charge

descatt - Used to display the overall Attack Rating of the skill in the Character Screen

Code Description

0 null

1 Displays the overall Attack Rating the character’s primary weapon

2 If the character can dual wield two weapons, then display the overall Attack
Rating for each weapon

3 Displays the overall Attack Rating for throwing the right-hand weapon

4 Displays the overall Attack Rating for throwing the left-hand weapon

5 Displays the overall Attack Rating for a skill marked with the “finishing” flag

descmissile1 (to descmissile3) - Links a missile from Missiles.txt to be used as a
reference value for calculations

descline1 (to descline6) - Uses an ID value to select a description function to format
the string value. Displays this text as the current level and next level description lines in
the skill tooltip.

Code Parameters Description

0
(or
empty)

 None

13 desctexta
desccalca
desccalcb

Calculates the Life value of the monster referenced from
the “summon” field in the linked skill. Also multiplies this
value with [desccalca] as a Life Percent bonus or adds to
this value with [desccalcb] as a Life Add bonus.

Inserts this calculated Life value into [desctexta] and output
that string

31 desctexta
desctextb
desccalca
desccalcb

Performs the calculation using the “AiCurseDivisor” from
difficultylevels.txt based on the current game’s difficulty
mode: [desccalca] / [AiCurseDivisor] / [desccalcb]

If this value is equals to 1, then insert the calculated value
into [desctexta] and output that string
If this value is greater than or less than 1, then insert the
calculated value into [desctextb] and output that string

34 desctexta Calculates the Damage value of the monster referenced
from the “summon” field in the linked skill. Then this

function inserts that value into [desctexta] and outputs that
string

36 desctexta
desctextb
desccalca
desccalcb

Performs the calculation of a value: [desccalca] /
[desccalcb]

If this value is equals to 1, then insert the value into
[desctexta] and output that string
If this value is greater than or less than 1, then insert the
value into [desctextb] and output that string

40 desctexta
desctextb
desccalca

Use [desccalca] as a code to change the color of the string

0 = White (R=255, G=255, B=255)
1 = Red (R=255, G=77, B=77)
2 = Green (R=0, G=255, B=0)
3 = Blue (R=105, G=105, B=255)
4 = Light Gold (R=199, G=179, B=119)
5 = Grey (R=105, G=105, B=105)
6 = Black (R=0, G=0, B=0)
7 = Dark Gold (R=208, G=194, B=125)
8 = Orange (R=255, G=168, B=0)
9 = Yellow (R=255, G=255, B=100)
10 = Dark Green (R=0, G=128, B=0)
11 = Purple (R=174, G=0, B=255)
12 = Medium Green (R=0, G=200, B=0)

Inserts [desctextb] into [desctexta] and outputs that string

56 Gets the quantity of the item that is connected to the linked
skill and inserts this value into the “scrollbooktext” string
and outputs that string

74 desctexta
desccalca

Inserts [desccalca] into [desctexta] and outputs that string

75 desctexta
desccalca
desccalcb

Inserts [desccalca] and [desccalcb] into [desctexta] and
outputs that string

76 desctexta
desctextb
desccalca

Inserts [desctextb] and [desccalca] into [desctexta] and
outputs that string

77 desctexta
desctextb
desccalca
desccalcb

Inserts [desctextb], [desccalca], and [desccalcb] into
[desctexta] and outputs that string

desctexta1 (to desctexta6) - String value used as the first possible string parameter for
the descline function
desctextb1 (to desctextb6) - String value used as the second possible string
parameter for the descline function

desccalca1 (todesccalca6) - Integer calculation value used as the first possible
numeric parameter for the descline function
desccalcb1 (todesccalcb6) - Integer calculation value used as the second possible
numeric parameter for the descline function

dsc2line1 (to dscline5) - Uses an ID value to select a description function to format the
string value. Displays this text as a pinned line, after the skill description. (Uses the
same function codes as descline1)
dsc2texta1 (to dsc2texta5) - String value used as the first possible string parameter for
the dsc2line function
dsc2textb1 (to dsc2textb5) - String value used as the second possible string
parameter for the dsc2line function
dsc2calca1 (to dsc2calca5) - Integer Calc value used as the first possible numeric
parameter for the dsc2line function
dsc2calcb1 (to dsc2calcb5) - Integer Calc value used as the second possible numeric
parameter for the dsc2line function

dsc3line1 (to dsc3line7) - Uses an ID value to select a description function to format
the string value. Displays this text as a pinned line at the bottom of the skill tooltip.
(Uses the same function codes as descline1)
dsc3texta1 (to dsc3texta7) - String value used as the first possible string parameter for
the dsc3line function
dsc3textb1 (to dsc3textb7) - String value used as the second possible string
parameter for the dsc3line function
dsc3calca1 (to dsc3calca7) - Integer Calc value used as the first possible numeric
parameter for the dsc3line function
dsc3calcb1 (to dsc3calcb7) - Integer Calc value used as the second possible numeric
parameter for the dsc3line function

sounds.txt

Overview

This file controls settings for all sounds in the game

The order of each sound defined in this file will convey what ID value it has. This
existing order should not be changed.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Sound - Defines the unique name ID for the sound, which is how other files can
reference the sound

Redirect - Points the sound so the index of another sound in the data file. If this field is
not empty, the game will use the redirected sound instead of this sound. This can be
used when playing the game in the new graphics mode.
Channel - Declares which channel the sound is initialized in. This can affect how
different volume or sound settings handle this sound.
FileName - Defines the file path and name of the sound file to play

IsLocal - Boolean Field. If equals 1, then this sound is considered a localized sound
and will change based on the game’s localization setting. If equals 0, then ignore this.
IsMusic - Boolean Field. If equals 1, then the sound is flagged as a music sound, which
affects how music related settings handle this sound. If equals 0, then ignore this.
IsAmbientScene - Boolean Field. If equals 1, then the sound is flagged as an ambient
scene sound, which affects how the game handles the sound when the player
transitions between areas. If equals 0, then ignore this.
IsAmbientEvent - Boolean Field. If equals 1, then the sound is flagged as an ambient
event sound, which affects how the game treats the sound when the player transitions
between areas. If equals 0, then ignore this.
IsUI - Boolean Field. If equals 1, then the sound is flagged as a UI sound, which affects
how UI related settings handle this sound. If equals 0, then ignore this.

Volume Min - Controls the minimum volume of the sound. Uses a range of 0 to 255.
Volume Max - Controls the maximum volume of the sound. If both “Volume Min” and
“Volume Max” fields differ in value, then the sound will randomly select a volume value
in between these values when it is played. Uses a range of 0 to 255.

Pitch Min - Controls the minimum pitch percentage of the sound.
Pitch Max - Controls the maximum pitch percentage of the sound. If both “Pitch Min”
and “Pitch Max” fields differ in value, then the sound will randomly select a pitch value in
between these values when it is played.

Group Size - Defines a sound Group by declaring a size value. When the sound has
this value greater than 0, then this sound is declared as the group’s base sound. Any
link to use a sound should use the base sound, to signify that the game should use this
group of sounds. This field’s value controls the number of sounds indexed after base
sound that should be added to the group. For example, if the sound has a “Group Size”
value equal to 5, then this sound is declared as the group’s base sound, and the next 4
sounds indexed after this base sound will be added to the group.
Group Weight - Controls the chance to pick the sound when it is part of a group with
other sounds. If all sounds in the group do not have a “Group Weight” value, then the
group sounds will play in historical order. This value controls a weighted random
chance, meaning that all related sounds have their weights added together for a total
chance and each sound’s weight value is rolled against that total value to determine if

the sound is successfully picked. The higher this value, the more likely the sound will be
picked. This is only used when the sound is part of a group (See “Group Size”).

Loop - Boolean Field. If equals 1, then the sound will replay itself after it finishes
playing. If equals 0, then the sound will only play once.
Fade In - Controls how long to gradually increase the sound’s volume starting from 0
when the sound starts playing. Measured in audio game ticks, where 1 game frame is
40 audio ticks, and the game runs at 25 frames per second.
Fade Out - Controls how long to gradually decrease the sound’s volume to 0 when the
sound stops playing. Measured in audio game ticks, where 1 game frame is 40 audio
ticks, and the game runs at 25 frames per second.

Defer Inst - Boolean Field. If equals 1, then when a duplicate instance of this sound
plays the game will stop that request. If equals 0, then ignore this.
Stop Inst - Boolean Field. If equals 1, then when a duplicate instance of this sound
plays the previous instance of the sound will stop and the new instance of the sound will
play. If equals 0, then ignore this.

Duration - Controls the length of time to play the sound. When the sound has been
playing for this length of time, then the sound will stop. If this equals 0, then ignore this
functionality.
Compound - Controls the game tick time limit for when a sound can join in playing
based on the previous sound played in the Group. If equals 0, then the sound will not be
compounded.

Falloff - Defines the range of falloff for hearing the sound, based on distance. Uses a
code to determine the range value presets.

Code Description

0 Short - falloff range is 60 to 400 pixels

1 Medium - falloff range is 60 to 700 pixels

2 Large - falloff range is 200 to 1000 pixels

3 Ambient - falloff range is 400 to 1500 pixels

4 Voice - falloff range is 2000 pixels (no falloff)

LFEMix - Controls the percentage (out of 100) of the sound’s Low-Frequency Effects
channel.
3dSpread - Controls the 3D spread angle of the sound. This only works if the sound is
considered a 3D sound (See “Is2D”).

Priority - Controls which if the sound should play before other sounds when too many
sounds are playing at once. This value is compared to the priority value of other sounds,
and the sound that has the higher priority will play first. Sounds belonging to the player
will get an increased priority value of 80.

Stream - Boolean Field. If equals 1, then the sound will be file streamed into the game
when called to play. If equals 0, then the entire sound will be loaded into the game
before playing.

Is2D - Boolean Field. If equals 1, then the sound is considered a 2D sound and will not
have 3D spread settings. If equals 0, then the sound is considered a 3D sound and will
use the 3D spread settings.
Tracking - Boolean Field. If equals 1, then the sound will track a unit and will update its
position to follow that unit. If equals 0, then the sound will not move and will be
stationary.
Solo - Boolean Field. If equals 1, then reduce the volume of other sounds while this
sound is playing. If equals 0, then ignore this.
Music Vol - Boolean Field. If equals 1, then the sound’s volume will be affected by the
music volume in the game options menu. If equals 0, then ignore this.
Block 1 (to Block 3) - Defines an offset time value in the sound. If this sound is used in
a Sound Environment (See SoundEnviron.txt) then these fields control when to
periodically update the current song sound to an offset. If this sound is not used in a
Sound Environment and if only “Block 1” is used and the “Loop” field is enabled, then
use this block value as the time in the sound when to start looping. If this equals -1, then
the field is ignored.
HDOptOut - Boolean Field. If equals 1, then the sound will not play in the new graphics
mode. If equals 0, then the sound will play in the new graphics mode.
Delay - Adds a delay to the starting tick of the sound when the sound starts playing.
Measured in audio game ticks, where 1 game frame is 40 audio ticks, and the game
runs at 25 frames per second.

SoundEnviron.txt

Overview

This file controls the music and ambient sounds that are played while the player is in the
area level

The order of each Sound Environment defined in this file will convey what ID value it
has

This file relies on sounds from sounds.txt

This file is used by levels.txt

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Handle - A reference field to define the name of the Sound Environment

Song - Play this sound as the background music while the player is in an area level.
Points to a “Sound” value in the sounds.txt file.

Day Ambience - Play this sound as an ambient sound while it is currently daytime in
the game. Points to a “Sound” value in the sounds.txt file.
HD Day Ambience - Play this sound as an ambient sound while it is currently daytime
in the game while playing in the new graphics mode. Points to a “Sound” value in the
sounds.txt file.
Night Ambience - Play this sound as an ambient sound while it is currently nighttime in
the game. Points to a “Sound” value in the sounds.txt file.
HD Night Ambience - Play this sound as an ambient sound while it is currently
nighttime in the game while playing in the new graphics mode. Points to a “Sound”
value in the sounds.txt file.

Day Event - Play this sound at a random range and variance in the background when it
is currently daytime in the game. Points to a “Sound” value in the sounds.txt file.
HD Day Event - Play this sound at a random range and variance in the background
when it is currently daytime in the game while playing in the new graphics mode. Points
to a “Sound” value in the sounds.txt file.
Night Event - Play this sound at a random range and variance in the background when
it is currently nighttime in the game. Points to a “Sound” value in the sounds.txt file.
HD Night Event - Play this sound at a random range and variance in the background
when it is currently nighttime in the game while playing in the new graphics mode.
Points to a “Sound” value in the sounds.txt file.
Event Delay - Controls the baseline number of frames to wait before playing the “Day
Event” or “Night Event” sound, depending on the time of day. This only applies when the
game is being played in SD mode. This value is used in the following calculation to get
a random time to play the next event sound: [“Event Delay”] - [“Event Delay”] / 3 +
RANDOM(0, ([“Event Delay”] / 3 * 2 + 1))
HD Event Delay - Controls the baseline number of frames to wait before playing the
“Day Event” or “Night Event” sound, depending on the time of day. This only applies
when the game is being played in the new graphics mode. This value is used in the
following calculation to get a random time to play the next event sound: [“Event Delay”] -
[“Event Delay”] / 3 + RANDOM(0, ([“Event Delay”] / 3 * 2 + 1))

Indoors - Boolean Field. If equals 1 then, if the current sound being played in the area
level with this Sound Environment is “event_thunder_1”, then the sound will be
obstructed. If equals 0, then ignore this.

Material 1 & Material 2 - Controls the material of the Sound Environment, which affects
which footstep sounds are played. Uses a code to define a specific material.

Code Description

0 None

1 Dirt

2 Indoor Stone

3 Outdoor Stone

4 Sand

5 Snow

6 Wood

HD Material 1 & HD Material 2 - Controls the material of the Sound Environment,
which affects which footstep sounds are played. Uses a code to define a specific
material. This only applies when the game is being played in the new graphics mode.
See “Material 1 & Material 2” for the code descriptions.

The following are sound reverberation settings for special effects sounds

SFX EAX Environ - Determines an environment preset for default sound reverberation
settings.

Code Description

0 Generic

1 Padded Cell

2 Room

3 Bathroom

4 Livingroom

5 Stone Room

6 Auditorium

7 Concert Hall

8 Cave

9 Arena

10 Hanger

11 Carpeted Hallway

12 Hallway

13 Stone Corridor

14 Alley

15 Forest

16 City

17 Mountains

18 Quarry

19 Plain

20 Parking Lot

21 Sewer Pipe

22 Underwater

23 Drugged

24 Dizzy

25 Psychotic

26 Programmer Test (A long distant echo)

SFX EAX Room Vol - Room effect level at mid frequencies.
SFX EAX Room HF - Relative room effect level at high frequencies.
SFX EAX Decay Time - Reverberation decay time at mid frequencies.
SFX EAX Decay HF - High-frequency to mid-frequency decay time ratio.
SFX EAX Reflect - Early reflections level relative to room effect.

SFX EAX Reflect Delay - Initial reflection delay time.
SFX EAX Reverb - Late reverberation level relative to room effect.
SFX EAX Rev Delay - Late reverberation delay time relative to initial reflection.

The following are sound reverberation settings for Voice sounds.

VOX EAX Environ - Determines an environment preset for default sound reverberation
settings.

Code Description

0 Generic

1 Padded Cell

2 Room

3 Bathroom

4 Livingroom

5 Stone Room

6 Auditorium

7 Concert Hall

8 Cave

9 Arena

10 Hanger

11 Carpeted Hallway

12 Hallway

13 Stone Corridor

14 Alley

15 Forest

16 City

17 Mountains

18 Quarry

19 Plain

20 Parking Lot

21 Sewer Pipe

22 Underwater

23 Drugged

24 Dizzy

25 Psychotic

26 Programmer Test (A long distant echo)

VOX EAX Room Vol - Room effect level at mid frequencies.
VOX EAX Room HF - Relative room effect level at high frequencies.
VOX EAX Decay Time - Reverberation decay time at mid frequencies.
VOX EAX Decay HF - High-frequency to mid-frequency decay time ratio.
VOX EAX Reflect - Early reflections level relative to room effect.
VOX EAX Reflect Delay - Initial reflection delay time.
VOX EAX Reverb - Late reverberation level relative to room effect.
VOX EAX Rev Delay - Late reverberation delay time relative to initial reflection.

states.txt

Overview

This file defines the different states used by the game and controls how they function.
States are basically passive behaviors applied to units that can apply various effects.

This file is used by the following data files: cubemain.txt, MonProp.txt, Overlay.txt,
Runes.txt, Sets.txt, SetItems.txt, skills.txt, UniqueItems.txt

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

state - Defines the unique name ID for the state
group - Assigns the state to a group ID value. This means that only 1 state with that
group ID can be active at any time on a unit. If this value is empty, then ignore this.

remhit - Boolean field. If equals 1, then this state will be removed when the unit is hit. If
equals 0, then ignore this.
nosend - Boolean field. If equals 1, then this state change will not be sent to the client.
If equals 0, then ignore this.
transform - Boolean field. If equals 1, then this state will be flagged to change the unit’s
appearance and reset its animations when it is applied. If equals 0, then ignore this.
aura - Boolean field. If equals 1, then this state will be treated as an aura. If equals 0,
then ignore this.
curable - Boolean field. If equals 1, then this state can be cured (This can be checked
by NPC healing or the Paladin Cleansing skill). If equals 0, then ignore this.
curse - Boolean field. If equals 1, then this state will be flagged as a curse. If equals 0,
then ignore this.
active - Boolean field. If equals 1, then the state will be classified as an active state
which enables the “cltactivefunc” and “srvactivefunc” fields. If equals 0, then ignore this.
restrict - Boolean field. If equals 1, then this state will restrict the usage of certain skills
(This connects with the “restrict” field from the skills.txt file). If equals 0, then ignore this.
disguise - Boolean field. If equals 1, then this state will be flagged as a disguise,
meaning that the unit’s appearance is changed, which can affect how the animations
are treated when being used. If equals 0, then ignored this.

attblue - Boolean field. If equals 1, then the state will make the related Attack Rating
value in the character screen be colored blue. If equals 0, then ignore this.
damblue - Boolean field. If equals 1, then the state will make related Damage value in
the character screen be colored blue. If equals 0, then ignore this.

armblue - Boolean field. If equals 1, then the state will make Defense value (Armor) in
the character screen be colored blue. If equals 0, then ignore this.
rfblue - Boolean field. If equals 1, then the state will make Fire Resistance value in the
character screen be colored blue. If equals 0, then ignore this.
rlblue - Boolean field. If equals 1, then the state will make Lightning Resistance value in
the character screen be colored blue. If equals 0, then ignore this.
rcblue - Boolean field. If equals 1, then the state will make Cold Resistance value in the
character screen be colored blue. If equals 0, then ignore this.
stambarblue - Boolean field. If equals 1, then the state will make the Stamina Bar UI in
the HUD be colored blue. If equals 0, then ignore this.
rpblue - Boolean field. If equals 1, then the state will make Poison Resistance value in
the character screen be colored blue. If equals 0, then ignore this.

attred - Boolean field. If equals 1, then the state will make the related Attack Rating
value in the character screen be colored red. If equals 0, then ignore this.
damred - Boolean field. If equals 1, then the state will make related Damage value in
the character screen be colored red. If equals 0, then ignore this.
armred - Boolean field. If equals 1, then the state will make Defense value (Armor) in
the character screen be colored red. If equals 0, then ignore this.
rfred - Boolean field. If equals 1, then the state will make Fire Resistance value in the
character screen be colored red. If equals 0, then ignore this.
rlred - Boolean field. If equals 1, then the state will make Lightning Resistance value in
the character screen be colored red. If equals 0, then ignore this.
rcred - Boolean field. If equals 1, then the state will make Cold Resistance value in the
character screen be colored red. If equals 0, then ignore this.
rpred - Boolean field. If equals 1, then the state will make Poison Resistance value in
the character screen be colored red. If equals 0, then ignore this.

exp - Boolean field. If equals 1, then a unit with this state will give exp when killed or will
gain exp when killing another unit. If equals 0, then ignore this.
plrstaydeath - Boolean field. If equals 1, then the state will persist on the player after
that player is killed. If equals 0, then ignore this. state stays after death
monstaydeath - Boolean field. If equals 1, then the state will persist on the monster
(non-boss) after that monster is killed. If equals 0, then ignore this.
bossstaydeath - Boolean field. If equals 1, then the state will persist on the boss after
that boss is killed. If equals 0, then ignore this.
hide - Boolean field. If equals 1, then the state will hide the unit when dead (corpse and
death animations will not be drawn). If equals 0, then ignore this.
shatter - Boolean field. If equals 1, then the state causes ice shatter missiles to create
when the unit dies. If equals 0, then ignore this.
udead - Boolean field. If equals 1, then the state flags the unit as a used dead corpse
and the unit cannot be targeted for corpse skills. If equals 0, then ignore this.

life - Boolean field. If equals 1, then this state will cancel out the monster’s normal life
regeneration. If equals 0, then ignore this.

green - Boolean field. If equals 1, then the state overrides the color changes the unit
and the unit will be colored green. If equals 0, then ignore this.. If equals 0, then ignore
this.
pgsv - Boolean field. If equals 1, then the state is flagged as part of a progressive skill
which relates to charge-up skill functionalities. If equals 0, then ignore this.
nooverlays - Boolean field. If equals 1, then the standard way for states to add overlays
will be disabled. If equals 0, then ignore this.
noclear - Boolean field. If equals 1, then when this state is applied on the unit, it will not
clear stats that have this state from the state’s previous application. If equals 0, then
ignore this.
bossinv - Boolean field. If equals 1, then the unit with this state will use the state’s
source unit’s (in this case, the unit’s boss) inventory for generating the unit’s equipped
item graphics. If equals 0, then ignore this.
meleeonly - Boolean field. If equals 1, then the state will make the all the unit’s attack
become melee attacks. If equals 0, then ignore this.
notondead - Boolean field. If equals 1, then the state will not play its On function
(function that happens when the state is applied) if the unit is dead. If equals 0, then
ignore this.

overlay1 (to overlay4) - Controls which overlay to use for normally displaying the state
(Uses the “overlay” field from the Overlay.txt file). The usage depends on the specific
state defined and/or the function using the state. Typically, states use “overlay1” for the
Front overlay and “overlay2” for the Back overlay. Other cases can have states use
each overlay field as the Front Start, Front End, Back Start, and Back End, respectively.
pgsvoverlay - Controls which overlay to use when the state has progressive charges
on the unit, such as for the charge-up stat when using Assassin Martial Arts charge-up
skills (Uses the “overlay” field from the Overlay.txt file)
castoverlay - Controls which overlay to use when the state is initially applied on the unit
(Uses the “overlay” field from the Overlay.txt file)
removerlay - Controls which overlay to use when the state is removed from the unit
(Uses the “overlay” field from the Overlay.txt file)

stat - Controls the stat associated with the stat. This is also used when determining how
to add the progressive overlay (Uses the “Stat” field from ItemStatCost.txt)

setfunc - Controls the client side set functions for when the state is initially applied on
the unit

Code Parameters Description

0 Do nothing

1 stat Creates the overlay used for a progressive state. Can only be
used if the “pgsv” flag is enabled and the “pgsvoverlay” field
has a value.

2 Changes the area level’s room lighting based on a skill’s
“auralencalc” field from the skills.txt file. Gets the skill by
looking at the “modifierlist_skill” stat defined in the
ItemStatsCost.txt file

3 Updates a skill’s level. Gets the skill by looking at the
“modifierlist_skill” stat defined in the ItemStatsCost.txt file.

4 Sets the source unit for the state. Gets the “source_unit_type”
and “source_unit_id” stats defined in the ItemStatsCost.txt file.

5 Changes the monster’s class type to another monster’s class
type. Gets the “shortparam1” stat defined in the
ItemStatsCost.txt file and uses stat’s parameter to get the
class type that the unit should change to. Only works for
monster units. Has a special case where if the class the
monster changed from was the “baalthrone” monster (defined
in monstats.txt), then also set the path of the monster to move
a direction.

6 Gets the skill by looking at the “modifierlist_skill” stat defined
in the ItemStatsCost.txt file and then creates the overlays
defined in the “castoverlay” and “overlay#” fields

7 Plays a sound from the “prgsound” field of a skill from the
skills.txt file. Gets the skill by looking at the “modifierlist_skill”
stat defined in the ItemStatsCost.txt file.

8 Gets the skill by looking at the “modifierlist_skill” stat defined
in the ItemStatsCost.txt file and then creates the overlays
defined in the “overlay1”, “overlay2” and “overlay3” fields

9 Calls the updates passive skills function which updates the
values of any skill with a “passivestate” field defined in the
skills.txt file

10 skill Creates the missile defined in the “skill” parameter’s
“cltmissile” field and hides the targeted unit

11 Hides the unit, by disabling the drawing of its visuals

12 Hides the unit, by disabling the drawing of its visuals and
shadows

13 Initializes the particle for attaching to the unit by getting the
offset of the source unit’s Special component

14 Tells the unit to use the “SKILL1” command and resets its
direction

15 Sets the monster mode to neutral and sets its flag to a pet

16 Sets up the overlays for a charge up skill. Gets the skill by
looking at the “modifierlist_skill” stat defined in the
ItemStatsCost.txt file. Applies all the overlays defined the
“overlay#” fields, based on the number of skill charges on the
unit.

17 missile Creates the missile defined in the “missile” parameter

18 missile Creates blood on the targeted unit and creates the missile
defined in the “missile” parameter

19 Sets the global skill cooldown to 0

remfunc - Controls the client side remove functions for when the state is removed from
the unit

Code Description

0 Do nothing

1 Removes the “pgsvoverlay” overlay. This function relies on the “pgsv” being
enabled.

2 Removes the state’s source unit

3 Removes the overlays defined in the “castoverlay” and all of the “overlay#”
fields

4 Removes the “cltprgsound” from the related skill. To get the skill, this looks at
the “modifierlist_skill” stat defined in the ItemStatsCost.txt file.

5 Removes the overlays defined in the “castoverlay”, “overlay1”, “overlay2”,
and “overlay3” fields

6 Calls the updates passive skills function which updates the values of any skill
with a “passivestate” field defined in the skills.txt file

7 Checks that the related unit is a monster and that the skill used is the “Nest”
skill defined in the skills.txt file. If true, then it removes the related unit’s
collision pattern.

8 Hides the unit, by disabling the drawing of its visuals and shadows

9 Removes particles attached to the unit or the position of the unit

10 Gets the related unit’s position and creates a “monstercorpseexplode” and
“pain worm appear” missile defined from the Missiles.txt file

11 Removes the overlays defined in all of the “overlay#” fields

12 Sets the global skill cooldown to 0

missile - Used as a possible parameter for the “setfunc” field (Uses the “Missile” field
from Missiles.txt)
skill - Used as a possible parameter for the “setfunc” field (Uses the “skill” field from
skills.txt)

itemtype - Defines a potential Item Type (see ItemTypes.txt) that can be affected by the
state’s color change

itemtrans - Controls the color change of the item when the unit has this state (Uses
Color Codes from the reference file colors.txt)

Code Color

 No color change

whit White

lgry Light Grey

dgry Dark Grey

blac Black

lblu Light Blue

dblu Dark Blue

cblu Crystal Blue

lred Light Red

dred Dark Red

cred Crystal Red

lgrn Light Green

dgrn Dark Green

cgrn Crystal Green

lyel Light Yellow

dyel Dark Yellow

lgld Light Gold

dgld Dark Gold

lpur Light Purple

dpur Dark Purple

oran Orange

bwht Bright White

colorpri - Defines the priority of the state’s color change, when compared to other
current sates on the unit. The current state that has the highest color priority on the unit
will be used and other state colors will be ignored. If multiple current states share the
same color priority value, then the game will choose the state with the lower ID value
(based on where in the list of states in the data file that the state is defined)

colorshift - Controls which index of the color shift palette to use.

ID Description

0
(or empty)

Do nothing

1 First Hue Rotation

25 First Hue Rotation and Darken

49 First Hue Rotation and Lighten

73 Color to Grey

74 Color to Black

75 First No Red Rotation

100 Color to Red

101 Color to Orange

102 Color to Yellow

103 Color to Grass

104 Color to Green
(There is a special case to not turn the
player unit green)

105 Color to Teal

106 Color to Aqua

107 Color to Light Blue

108 Color to Blue

109 Color to Purple

110 Color to Magenta

111 Color to Some Funky Red

112 Color to RGB Red

113 Color to RGB Green

114 Color to RGB Blue

light-r - Controls the state’s change of the red color value of the Light radius (Uses a
value from 0 to 255)
light-g - Controls the state’s change of the green color value of the Light radius (Uses a
value from 0 to 255)
light-b - Controls the state’s change of the blue color value of the Light radius (Uses a
value from 0 to 255)

onsound - Plays a sound when the state is initially applied to the unit. Links to a
“Sound” from the sounds.txt file.
offsound - Plays a sound when the state is removed from the unit. Links to a “Sound”
from the sounds.txt file.

gfxtype - Controls the how to handle the unit graphics transformation based on the unit
type (This relies on the “disguise” field being enabled). If equals 1, then use this on a
monster type unit. If equals 2, then use this on a player type unit. Otherwise, ignore this.

gfxclass - Control’s the unit class used for handling the unit graphics transformation.
This field relies on what unit type was used in the “gfxtype” field. If “gfxtype” equals 1 for
monster type units, then this field will rely on the “hcIdx” field from the monstats.txt data
file. If “gfxtype” equals 2, then this field will use the character class numeric ID.

ID Description

0 Amazon

1 Sorceress

2 Necromancer

3 Paladin

4 Barbarian

5 Druid

6 Assassin

cltevent - Controls the event to check on the client side to determine when to use the
function defined in the “clteventfunc” field (Uses an event defined in the Events.txt file)
clteventfunc - Controls the client Unit event function that is called when the event is
determined in the “cltevent” field. These functions are equal to the funuctions used

ID Description

0 Do nothing

1 Sorceress Apply Chilling Armor

• Requires on the “hitbymissile” event defined in the “cltevent” field

• Uses the related skill with this state and it’s related missile fields to
fire a missile at a target

cltactivefunc - Controls the Client Do function that is called every frame while the state
is active (see the “cltdofunc” field in skills.txt). This relies on the “active” field being
enabled.
srvactivefunc - Controls the Server Do function that is called every frame while the
state is active (see the “srvdofunc” field in skills.txt). This relies on the “active” field
being enabled.

canstack - Boolean Field. If equals 1, then this state can stack with duplicate forms of
itself (This is only usable with the “poison” state). If equals 0, then ignore this.

SuperUniques.txt

Overview

This file defines the Super Unique monsters and their properties. Super Unique
monsters are considered the special boss monsters that have static encounters in the
game.

This file uses the following data files: monsounds.txt, monstats.txt, monumod.txt,
TreasureClassEx.txt

Data Fields

Superunique - Defines the unique name ID for the Super Unique monster
Name - Uses a string for the Super Unique monster’s name
Class - Defines the baseline monster type for the Super Unique monster, which this
monster will use for default values. This uses the “Id” field from the monstats.txt file.
hcIdx - Defines the unique numeric ID for the Super Unique monster. The existing IDs
are hardcoded for specific scripts with the specified Super Unique monsters.

MonSound - Defines what set of sounds to use for the Super Unique monster. Uses the
“Id” field from the monsounds.txt file. If this field is empty, then the Super Unique
monster will default to using the monster class sounds.

Mod1 (to Mod3) - Controls which monster modifier to assign to the Super Unique
monster. Uses the “id” field from the monumod.txt file (See that file for details on the
available modifiers).

MinGrp - Controls the min amount of Minion monsters that will spawn with the Super
Unique monster.
MaxGrp - Controls the max amount of Minion monsters that will spawn with the Super
Unique monster. This value must be equal to or higher than “MinGrp”. If this value is
greater than “MinGrp” then a random number will be chosen between the “MinGrp” and
“MaxGrp” values.

AutoPos - Boolean Field. If equals 1, then the Super Unique monster will randomly
spawn within a radius of its designated position. If equals 0, then the Super Unique
monster will spawn at exact coordinates of its designated position.

Stacks - Boolean Field. If equals 1, then this Super Unique monster can spawn more
than once in the same game. If equals 0, then this Super Unique monster can only
spawn once in the same game.
Replaceable - Boolean Field. If equals 1, then the room where the Super Unique
monster spawns in can be replaced during the creation of a level preset. If equals 0,
then the room cannot be replaced and will remain static.

Utrans & Utrans(N) & UTrans(H) - Modifies the color transform for the unique monster
respectively in Normal, Nightmare, or Hell difficulty. If this value is greater than or equal
to 30, then the value will default to 2, which is the monster’s default color palette shift. If
the value is 0 or is empty, then a random value will be chosen.

TC & TC(N) & TC(H) - Controls the Treasure Class to use when the Super Unique
monster is killed respectively in Normal, Nightmare, or Hell difficulty. This linked to the
“Treasure Class” ID from the TreasureClassEx.txt file

TreasureClassEx.txt

Overview

This file controls the Treasure Class linked to a monster drop. Treasure Classes are
groups of item types and their chances of dropping from a monster.

This is used by the following data files: monstats.txt, SuperUniques.txt

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

Treasure Class - Defines the unique Treasure Class ID, that is referenced in other files.

group - Assigns the Treasure Class to a group ID value, which will connect this
Treasure Class with other Treasure Classes, as a potential Treasure Class to use for an
itemdrop. When determining which Treasure Class to use for an item drop, the game
will iterate through all Treasure Classes that share the same group. This field works with
the “level” field to determine an ideal Treasure Class to use for the monster drop.
Treasure Classes that share the same group should be in contiguous order.
level - Defines the level of a Treasure Class. Monsters who have a Treasure Class will
pick the Treasure Class that a level value that is less than or equal to the monster’s
level. This is ignored for Boss monsters.

Picks - Controls how to handle the calculations for item drops. If this value is positive,
then this value will control how many item drop chances will be rolled for the Treasure
Class using the “Prob#” fields as probability values. If this value is negative, then this
value functions as the total guaranteed quantity of item drops from the Treasure Class,
and each “Prob#” field now defines the quantity of items generated from its related
“Item#” field. If this field is empty, then default to a value of 1.

Unique - Modifies the item ratio drop for a Unique Quality item. A higher value means a
better chance of being chosen. (See itemratio.txt for an explanation for how the Item
Quality is chosen)
Set - Modifies the item ratio drop for a Set Quality item. A higher value means a better
chance of being chosen. (See itemratio.txt for an explanation for how the Item Quality is
chosen)
Rare - Modifies the item ratio drop for a Rare Quality item. A higher value means a
better chance of being chosen. (See itemratio.txt for an explanation for how the Item
Quality is chosen)
Magic - Modifies the item ratio drop for a Magic Quality item. A higher value means a
better chance of being chosen. (See itemratio.txt for an explanation for how the Item
Quality is chosen)

NoDrop - Controls the probability of no item dropping by the Treasure Class. The
higher this value, then the more likely no item will drop from the monster. This can be
automatically be affected by the number of players currently in the game.

Item1 (to Item10) - Defines a potential Item Type (see ItemTypes.txt) or other Treasure
Class that can drop from this Treasure Class. Linking another Treasure Class in this
field means that there is a chance to use that Treasure Class group of items which the
game will then calculate a selection from that Treasure Class, and so on.
Prob1 (to Prob10) - The individual probability for each related “Item#” drop. The higher
this value, then the more likely the “Item#” field will be chosen. The chance a drop is
picked is calculated by summing all “Prob#” field values and the “NoDrop” value for a
total denominator value, and then having each “Prob#” value and the “NoDrop” value
rolling their chance out of the total denominator value for a drop.

UniqueAppellation.txt

Overview

This file controls the list of strings that are randomly selected to be used as an extra
suffix when generating unique monster names

The game has a 50% chance to randomly use Unique Appellation when generating the
Unique monster name.

• If a Unique Appellation is not added, then the game will generate a unique
monster name using the string called Monster1Format (ID: 1721)

• If a Unique Appellation is added, then the game will generate a unique monster
name using the string called Monster2Format (ID: 1722)

Data Fields

Name - A string key, which is used as a potential selection for generating a unique
monster’s name

UniqueItems.txt

Overview

This file defines each Unique item and controls their item modifiers.

The row order of items should not be changed because it defines their ID value.

Any column field name starting with “*” is considered a comment field and is not used by
the game.

Data Fields

index - Points to a string key value to use as the Unique item’s name
version - Defines which game version to create this item (<100 = Classic mode | 100 =
Expansion mode)
enabled - Boolean Field. If equals 1, then this item can be created and dropped. If
equals 0, then this item cannot be dropped.
ladder - Boolean Field. If equals 1, then this item can only be created and dropped in
online Battle.net Ladder games. If equals 0, then this item can be created and dropped
in any game mode.
rarity - Modifies the chances that this Unique item will spawn compared to the other
Unique items. This value acts as a numerator and a denominator. Each “rarity” value
gets summed together to give a total denominator, used for the random roll for the item.
For example, if there are 3 possible Unique items, and their “rarity” values are 3, 5, 7,
then their chances to be chosen are 3/15, 5/15, and 7/15 respectively. (The minimum
“rarity” value equals 1) (Only works for games in Expansion mode)
nolimit - Boolean Field. Requires the “quest” field from the misc.txt file to be enabled. If
equals 1, then this item can be created and will automatically be identified. If equals 0,
then ignore this.

lvl - The item level for the item, which controls what object or monster needs to be in
order to drop this item

lvl req - The minimum character level required to equip the item

code - Defines the baseline item code to use for this Unique item (must match the
“code” field value from weapons.txt, armor.txt, or misc.txt)
carry1 - Boolean Field. If equals 1, then players can only carry one of these items in
their inventory. If equals 0, then ignore this.

cost mult - Multiplicative modifier for the Unique item’s buy, sell, and repair costs
cost add - Flat integer modification to the Unique item’s buy, sell, and repair costs. This
is added after the “cost mult” has modified the costs.

chrtransform - Controls the color change of the item when equipped on a character or
dropped on the ground. If empty, then the item will have the default item color. (Uses
Color Codes from the reference file colors.txt)

Code Color

 No color change

whit White

lgry Light Grey

dgry Dark Grey

blac Black

lblu Light Blue

dblu Dark Blue

cblu Crystal Blue

lred Light Red

dred Dark Red

cred Crystal Red

lgrn Light Green

dgrn Dark Green

cgrn Crystal Green

lyel Light Yellow

dyel Dark Yellow

lgld Light Gold

dgld Dark Gold

lpur Light Purple

dpur Dark Purple

oran Orange

bwht Bright White

invtransform - Controls the color change of the item in the inventory UI. If empty, then
the item will have the default item color. (Uses Color Codes from the reference file
colors.txt)

Code Color

 No color change

whit White

lgry Light Grey

dgry Dark Grey

blac Black

lblu Light Blue

dblu Dark Blue

cblu Crystal Blue

lred Light Red

dred Dark Red

cred Crystal Red

lgrn Light Green

dgrn Dark Green

cgrn Crystal Green

lyel Light Yellow

dyel Dark Yellow

lgld Light Gold

dgld Dark Gold

lpur Light Purple

dpur Dark Purple

oran Orange

bwht Bright White

invfile - An override for the “invfile” field from the weapon.txt, armor.txt, or misc.txt files.
By default, the Unique item will use what was defined by the baseline item from the
“item” field.
flippyfile - An override for the “flippyfile” field from the weapon.txt, armor.txt, or misc.txt
files. By default, the Unique item will use what was defined by the baseline item from
the “item” field.

dropsound - An override for the “dropsound” field from the weapon.txt, armor.txt, or
misc.txt files. By default, the Unique item will use what was defined by the baseline item
from the “item” field.
dropsfxframe - An override for the “dropsfxframe” field from the weapon.txt, armor.txt,
or misc.txt files. By default, the Unique item will use what was defined by the baseline
item from the “item” field.
usesound - An override for the “usesound” field from the weapon.txt, armor.txt, or
misc.txt files. By default, the Unique item will use what was defined by the baseline item
from the “item” field.

prop1 (to prop12) - Controls the item properties for the Unique item (Uses the “code”
field from Properties.txt)
par1 (to par12) - The stat’s “parameter” value associated with the related property
(prop#). Usage depends on the property function (See the “func” field on Properties.txt)
min1 (to min12) - The stat’s “min” value to assign to the related property (prop#).
Usage depends on the property function (See the “func” field on Properties.txt)
max1 (to max12) - The stat’s “max” value to assign to the related property (prop#).
Usage depends on the property function (See the “func” field on Properties.txt)

worldevent - Boolean Field. If equals 1, then this item can be used to trigger the Uber
Diablo world event when it is sold to an NPC. If equals 0, then ignore this.

UniquePrefix.txt

Overview

This file controls the list of strings that are randomly selected to be used as the prefix
when generating unique monster names

This is always added to every unique monster name

Data Fields

Name - A string key, which is used as a potential selection for generating a unique
monster’s name

UniqueSuffix.txt

Overview

This file controls the list of strings that are randomly selected to be used as the suffix
when generating unique monster names

This is always added to every unique monster name

Data Fields

Name - A string key, which is used as a potential selection for generating a unique
monster’s name

weapons.txt

Overview

This file controls the functionalities for weapons type items

This file is loaded together with other similar files in the following order: weapons.txt,
armor.txt, misc.txt
These combined files form the items structure. Technically these files share the same
fields, but some fields are exclusive for specific item types, so they are not displayed in
the data files that do not need them.

Any column field name starting with “*” is considered a comment field and is not used by
the game

Data Fields

name - This is a reference field to define the item
version - Defines which game version to create this item (0 = Classic mode | 100 =
Expansion mode)
compactsave - Boolean Field. If equals 1, then only the item’s base stats will be stored
in the character save, but not any modifiers or additional stats. If equals 0, then all of the
items stats will be saved.
rarity - Determines the chance that the item will randomly spawn (1/#). The higher the
value then the rarer the item will be. This field depends on the “spawnable” field being
enabled, the “quest” field being disabled, and the item level being less than or equal to
the area level. This value is also affected by the relative Act number that the item is
dropping in, where the higher the Act number, then the more common the item will drop.
spawnable - Boolean Field. If equals 1, then this item can be randomly spawned. If
equals 0, then this item will never randomly spawn.

speed - If the item type is an armor, then this will affect the Walk/Run Speed reduction
when wearing the armor. If the item type is a weapon, then this will affect the Attack
Speed reduction when wearing the weapon.
reqstr - Defines the amount of the Strength attribute needed to use the item
reqdex - Defines the amount of the Dexterity attribute needed to use the item

durability - Defines the base durability amount that the item will spawn with.
nodurability - Boolean Field. If equals 1, then the item will not have durability. If equals
0, then the item will have durability.

level - Controls the base item level. This is used for determining when the item is
allowed to drop, such as making sure that the item level is not greater than the
monster’s level or the area level.
ShowLevel - Boolean Field. If equals 1, then display the item level next to the item
name. If equals 0, then ignore this.
levelreq - Controls the player level requirement for being able to use the item

cost - Defines the base gold cost of the item when being sold by an NPC. This can be
affected by item modifiers and the rarity of the item.
gamble cost - Defines the gambling gold cost of the item on the Gambling UI

code - Defines a unique 3 letter/number code for the item. This is used as an identifier
to reference the item.
namestr - String Key that is used for the base item name

magic lvl - Defines the magic level of the item, which can affect how magical item
modifiers that can appear on the item (See automagic.txt)
auto prefix - Automatically picks an item affix name from a designated “group” value
from the automagic.txt file, instead of using random prefixes. This is only used when the
item is Magical quality.

alternategfx - Uses a unique 3 letter/number code similar to the defined “code” fields to
determine what in-game graphics to display on the player character when the item is
equipped

normcode - Links to a “code” field to determine the normal version of the item
ubercode - Links to a “code” field to determine the Exceptional version of the item
ultracode - Links to a “code” field to determine the Elite version of the item

component - Determines the layer of player animation when the item is equipped. This
uses a code referenced from the Composit.txt file.

Code Description

0 Head

1 Torso

2 Legs

3 Right Arm

4 Left Arm

5 Right Hand

6 Left Hand

7 Shield

8 Special 1

9 Special 2

10 Special 3

11 Special 4

12 Special 5

13 Special 6

14 Special 7

15 Special 8

16 Do not display anything

invwidth & invheight - Defines the width and height of grid cells that the item occupies
in the player inventory

hasinv - Boolean Field. If equals 1, then the item will have its own inventory allowing for
the capability to socket gems, runes, or jewels. If equals 0, then the item cannot have
sockets.

gemsockets - Controls the maximum number of sockets allowed on this item. This is
limited by the item’s size based on the “invwidth” and “invheight” fields. This also
compares with the “MaxSock1”, “MaxSock25” and “MaxSock40” fields from the
ItemTypes.txt file.

gemapplytype - Determines which affect from a gem or rune will be applied when it is
socketed into this item (See gems.txt)

Code Description

0 Weapon

1 Armor or Helmet

2 Shield

flippyfile - Controls which DC6 file to use for displaying the item in the game world
when it is dropped on the ground (uses the file name as the input)
invfile - Controls which DC6 file to use for displaying the item graphics in the inventory
(uses the file name as the input)
uniqueinvfile - Controls which DC6 file to use for displaying the item graphics in the
inventory when it is a Unique quality item (uses the file name as the input)
setinvfile - Controls which DC6 file to use for displaying the item graphics in the
inventory when it is a Set quality item (uses the file name as the input)

useable - Boolean Field. If equals 1, then the item can be used with the right-click
mouse button command (this only works with specific belt items or quest items). If
equals 0, then ignore this.

stackable - Boolean Field. If equals 1, then the item will use a quantity field and handle
stacking functionality. This can depend on if the item type is throwable, is a type of
ammunition, or is some other kind of miscellaneous item. If equals 0, then the item
cannot be stacked.
minstack - Controls the minimum stack count or quantity that is allowed on the item.
This field depends on the “stackable” field being enabled.
maxstack - Controls the maximum stack count or quantity that is allowed on the item.
This field depends on the “stackable” field being enabled.
spawnstack - Controls the stack count or quantity that the item can spawn with. This
field depends on the “stackable” field being enabled.

Transmogrify - Boolean Field. If equals 1, then the item will use the transmogrify
function. If equals 0, then ignore this. This field depends on the “useable” field being
enabled.
TMogType - Links to a “code” field to determine which item is chosen to transmogrify
this item to.
TMogMin - Controls the minimum quantity that the transmogrify item will have. This
depends on what item was chosen in the “TMogType” field, and that the transmogrify
item has quantity.
TMogMax - Controls the minimum quantity that the transmogrify item will have. This
depends on what item was chosen in the “TMogType” field, and that the transmogrify
item has quantity.

type - Points to an Item Type defined in the ItemTypes.txt file, which controls how the
item functions
type2 - Points to a secondary Item Type defined in the ItemTypes.txt file, which controls
how the item functions. This is optional but can add more functionalities and possibilities
with the item.

dropsound - Points to sound defined in the sounds.txt file. Used when the item is
dropped on the ground.
dropsfxframe - Defines which frame in the “flippyfile” animation to play the “dropsound”
sound when the item is dropped on the ground.
usesound - Points to sound defined in the sounds.txt file. Used when the item is moved
in the inventory or used.

unique - Boolean Field. If equals 1, then the item can only spawn as a Unique quality
type. If equals 0, then the item can spawn as other quality types.

transparent - Boolean Field. If equals 1, then the item will be drawn transparent on the
player model (similar to ethereal models). If equals 0, then the item will appear solid on
the player model.

transtbl - Controls what type of transparency to use, based on the “transparent” field
being enabled.

Code Description

0 Transparency at 25%

1 Transparency at 50%

2 Transparency at 75%

3 Black Alpha Transparency

4 White Alpha Transparency

5 No Transparency

6 Dark Transparency (Unused)

7 Highlight Transparency (Used when mousing over the unit)

8 Blended

lightradius - Controls the value of the light radius that this item can apply on the
monster. This only affects monsters with this item equipped, not other types of units.
This is ignored if the item’s component on the monster is “lit”, “med”, or “hvy”.

belt - Controls which belt type to use for belt items only. This field determines what
index entry in the belts.txt file to use.

quest - Controls what quest class is tied to the item which can enable certain item
functionalities for a specific quest. Any value greater than 0 will also mean the item is
flagged as a quest item, which can affect how it is displayed in tooltips, how it is traded
with other players, its item rarity, and how it cannot be sold to an NPC. If equals 0, then
the item will not be flagged as a quest item.

Code Description

0 Not a quest item

1 Act 1 Prologue

2 Den of Evil

3 Sisters’ Burial Grounds

4 Tools of the Trade

5 The Search for Cain

6 The Forgotten Tower

7 Sisters to the Slaughter

8 Act 2 Prologue

9 Radament’s Lair

10 The Horadric Staff

11 The Tainted Sun

12 The Arcane Sanctuary

13 The Summoner

14 The Seven Tombs

15 Act 2 Traversed

16 Lam Esen’s Tome

17 Khalim’s Will

18 Blade of the Old Religion

19 The Golden Bird

20 The Blackened Temple

21 The Guardian

22 Act 4 Prologue

23 The Fallen Angel

24 Terror’s End

25 The Hellforge

26 Rogue Warning

27 Guard in Town Warning

28 Guard in Desert Warning

29 Dark Wanderer Seen

30 Angel Warning

31
Respec from Akara Complete
Act 5 Prologue

32 Siege on Harrogath

33 Rescue on Mount Arreat

34 Prison of Ice

35 Betrayal of Harrogath

36 Rite of Passage

37 Eve of Destruction

questdiffcheck - Boolean Field. If equals 1 and the “quest” field is enabled, then the
game will check the current difficulty setting and will tie that difficulty setting to the quest
item. This means that the player can have more than 1 of the same quest item as long

each they are obtained per difficulty mode (Normal / Nightmare / Hell). If equals 0 and
the “quest” field is enabled, then the player can only have 1 count of the quest item in
the inventory, regardless of difficulty.

missiletype - Points to the “Id” field from the Missiles.txt file, which determines what
type of missile is used when using the throwing weapons
durwarning - Controls the threshold value for durability to display the low durability
warning UI. This is only used if the item has durability.
qntwarning - Controls the threshold value for quantity to display the low quantity
warning UI. This is only used if the item has stacks.

mindam - The minimum physical damage provided by the item
maxdam - The maximum physical damage provided by the item

StrBonus - The percentage multiplier that gets multiplied the player’s current Strength
attribute value to modify the bonus damage percent from the equipped item. If this
equals 1, then default the value to 100.
DexBonus - The percentage multiplier that gets multiplied the player’s current Dexterity
attribute value to modify the bonus damage percent from the equipped item. If this
equals 1, then default the value to 100.

gemoffset - Determines the starting index offset for reading the gems.txt file when
determining what effects gems or runes will have the item based on the “gemapplytype”
field. For example, if this value equals 9, then the game will start with index 9 (“Chipped
Emerald”) and ignore the previously defined gems in the gems.txt file, which can mean
that those ignored gems will not apply modifiers when socketed into the item.
bitfield1 - Controls different flags that can affect the item. Uses an integer value to
check against different bit fields by using the “&” operator. For example, if the value
equals 5 (binary = 101) then that returns true for both the 4 (binary = 100) and 1 (binary
= 1) bit field values.

Bit Field
One Bits

Binary
Equivalent Value

Description

1 1 Allow the item to be capable of having Magic
quality

2 10 The item is classified as metal

4 100 The item is classified as a spellcaster item
(currently does nothing)

8 1000 The item is classified as a skill based item
(currently does nothing)

The following fields are separated per NPC in each Act:
[NPC]Min - Minimum amount of this item type in Normal rarity that the NPC can sell at
once
[NPC]Max - Maximum amount of this item type in Normal rarity that the NPC can sell at
once. This must be equal to or greater than the minimum amount.

[NPC]MagicMin - Minimum amount of this item type in Magical rarity that the NPC can
sell at once
[NPC]MagicMax - Maximum amount of this item type in Magical rarity that the NPC can
sell at once. This must be equal to or greater than the minimum amount.
[NPC]MagicLvl - Maximum magic level allowed for this item type in Magical rarity

Where [NPC] is one of the following:

Charsi

Gheed

Akara

Fara

Lysander

Drognan

Hratli

Alkor

Ormus

Elzix

Asheara

Cain

Halbu

Jamella

Larzuk

Malah

Anya

Transform - Controls the color palette change of the item for the character model
graphics

InvTrans - Controls the color palette change of the item for the inventory graphics

Code Color

0 No color change

1 Grey

2 Grey 2

3 Gold

4 Brown

5 Grey Brown

6 Inventory Grey

7 Inventory Grey 2

8 Inventory Grey Brown

SkipName - Boolean Field. If equals 1 and the item is Unique rarity, then skip adding
the item’s base name in its title. If equals 0, then ignore this.

NightmareUpgrade - Links to another item’s “code” field. Used to determine which item
will replace this item when being generated in the NPC’s store while the game is playing

in Nightmare difficulty. If this field’s code equals “xxx”, then this item will not change in
this difficulty.
HellUpgrade - Links to another item’s “code” field. Used to determine which item will
replace this item when being generated in the NPC’s store while the game is playing in
Hell difficulty. If this field’s code equals “xxx”, then this item will not change in this
difficulty.

Nameable - Boolean Field. If equals 1, then the item’s name can be personalized by
Anya for the Act 5 Betrayal of Harrogath quest reward. If equals 0, then the item cannot
be used for the personalized name reward.
PermStoreItem - Boolean Field. If equals 1, then this item will always appear on the
NPC’s store. If equals 0, then the item will randomly appear on the NPC’s store when
appropriate.
worldevent - Boolean Field. If equals 1, then this item can be used to trigger the Uber
Diablo world event when it is sold to an NPC. If equals 0, then ignore this.

The following fields are exclusive to the weapons.txt file because these fields only work
with Weapon type items:

1or2handed - Boolean Field. If equals 1, then the item will be treated as a one-handed
and two-handed weapon by the Barbarian class. If equals 0, then the Barbarian can
only use this weapon as either one-handed or two-handed, but not both.
2handed - Boolean Field. If equals 1, then the item will be treated as two-handed
weapon. If equals 0, then the item will be treated as one-handed weapon.

2handedwclass - Defines the two-handed weapon class, which controls what character
animations are used when the weapon is equipped

Code Description

1hs One Handed Swing

1ht One Handed Thrust

bow Bow

2hs Two Handed Swing

2ht Two Handed Thrust

1js Left Jab Right Swing

1jt Left Jab Right Thrust

1ss Left Swing Right Swing

1st Left Swing Right Thrust

stf Staff

xbw Crossbow

ht1 One Hand-To-Hand

ht2 Two Hand-To-Hand

2handmindam - The minimum physical damage provided by the weapon if the item is
two-handed. This relies on the “2handed” field being enabled.
2handmaxdam - The maximum physical damage provided by the weapon if the item is
two-handed. This relies on the “2handed” field being enabled.

hit class - Defines the hit class of the weapon which is used to know what SFX to use
when the weapon hits an enemy

Code Hit Class

(empty) None

hth Hand To Hand

1hss One Hand Swing vs. Small

1hsl One Hand Swing vs. Large

2hss Two Hand Swing vs. Small

2hsl Two Hand Swing vs. Large

1ht One Hand Thrust

2ht Two Hand Thrust

club Club

staf Staff

bow Bow

xbow Crossbow

claw Claw

over Overlay

minmisdam - The maximum physical damage provided by the item if it is a throwing
weapon
maxmisdam - The maximum physical damage provided by the item if it is a throwing
weapon

rangeadder - Adds extra range in grid spaces for melee attacks while the melee
weapon is equipped. The baseline melee range is 1, and this field adds to that range.

wclass - Defines the one-handed weapon class, which controls what character
animations are used when the weapon is equipped

Code Description

1hs One Handed Swing

1ht One Handed Thrust

bow Bow

2hs Two Handed Swing

2ht Two Handed Thrust

1js Left Jab Right Swing

1jt Left Jab Right Thrust

1ss Left Swing Right Swing

1st Left Swing Right Thrust

stf Staff

xbw Crossbow

ht1 One Hand-To-Hand

ht2 Two Hand-To-Hand

wanderingmon.txt

Overview

This file controls the list of monsters that can be used as good NPC units to randomly
place in certain area levels. The “actinfo.txt” file controls the statistics on when to spawn
wandering monsters, and this file simply controls the list of possible monsters to choose
from.

Data Fields

class - Uses a monster “Id” defined from the monstats.txt file. Monsters defined here
are added to a list which is used to randomly pick a monster to spawn in an area level.

Reference Data Files

The following files are considered hardcoded reference files used for specific fields or
as indices for other data files.

ArmType.txt
bodylocs.txt
colors.txt
compcode.txt
Composit.txt
cubemod.txt
ElemTypes.txt
events.txt
HitClass.txt
lowqualityitems.txt
misscalc.txt
MonMode.txt
MonPlace.txt
ObjMode.txt
ObjType.txt
PlayerClass.txt
PlrMode.txt
PlrType.txt
skillcalc.txt
StorePage.txt

